Function estimation via wavelets for data with long-range dependence

Y. Wang
{"title":"Function estimation via wavelets for data with long-range dependence","authors":"Y. Wang","doi":"10.1109/WITS.1994.513927","DOIUrl":null,"url":null,"abstract":"Traditionally, processes with long-range dependence have been mathematically awkward to manipulate. This has made the solution of many of the classical signal processing problems involving these processes rather difficult. For a fractional Gaussian noise model, we derive asymptotics for minimax risks and show that wavelet estimates can achieve minimax over a wide range of spaces. This article also establishes a wavelet-vaguelette decomposition (WVD) to decorrelate fractional Gaussian noise.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Traditionally, processes with long-range dependence have been mathematically awkward to manipulate. This has made the solution of many of the classical signal processing problems involving these processes rather difficult. For a fractional Gaussian noise model, we derive asymptotics for minimax risks and show that wavelet estimates can achieve minimax over a wide range of spaces. This article also establishes a wavelet-vaguelette decomposition (WVD) to decorrelate fractional Gaussian noise.
基于小波的长程相关数据函数估计
传统上,具有远程依赖关系的过程在数学上难以操作。这使得许多涉及这些过程的经典信号处理问题的解决变得相当困难。对于分数阶高斯噪声模型,我们导出了极大极小风险的渐近性,并表明小波估计可以在很宽的空间范围内实现极大极小。本文还建立了一种小波-小波分解(WVD)去相关分数阶高斯噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信