3D Reservoir Model History Matching Based on Machine Learning Technology

E. Illarionov, Pavel Temirchev, D. Voloskov, A. Gubanova, D. Koroteev, M. Simonov, A. Akhmetov, A. Margarit
{"title":"3D Reservoir Model History Matching Based on Machine Learning Technology","authors":"E. Illarionov, Pavel Temirchev, D. Voloskov, A. Gubanova, D. Koroteev, M. Simonov, A. Akhmetov, A. Margarit","doi":"10.2118/201924-ms","DOIUrl":null,"url":null,"abstract":"\n In adaptation of reservoir models a direct gradient backpropagation through the forward model is often intractable or requires enormous computational costs. Thus one have to construct separate models that simulate them implicitly, e.g. via stochastic sampling or solving of adjoint systems. We demonstrate that if the forward model is a neural network, gradient backpropagation becomes naturally involved both in model training and adaptation. In our research we compare 3 adaptation strategies: variation of reservoir model variables, neural network adaptation and latent space adaptation and discuss to what extent they preserve the geological content. We exploit a real-world reservoir model to investigate the problem in practical case. The numerical experiments demonstrate that the latent space adaptation provides the most stable and accurate results.","PeriodicalId":359083,"journal":{"name":"Day 2 Tue, October 27, 2020","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, October 27, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/201924-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In adaptation of reservoir models a direct gradient backpropagation through the forward model is often intractable or requires enormous computational costs. Thus one have to construct separate models that simulate them implicitly, e.g. via stochastic sampling or solving of adjoint systems. We demonstrate that if the forward model is a neural network, gradient backpropagation becomes naturally involved both in model training and adaptation. In our research we compare 3 adaptation strategies: variation of reservoir model variables, neural network adaptation and latent space adaptation and discuss to what extent they preserve the geological content. We exploit a real-world reservoir model to investigate the problem in practical case. The numerical experiments demonstrate that the latent space adaptation provides the most stable and accurate results.
基于机器学习技术的三维油藏模型历史匹配
在油藏模型的自适应中,通过正演模型的直接梯度反向传播通常是难以处理的,或者需要大量的计算成本。因此,人们必须构建单独的模型来隐式地模拟它们,例如通过随机抽样或求解伴随系统。我们证明,如果正向模型是一个神经网络,梯度反向传播在模型训练和自适应中都很自然地涉及到。本文比较了储层模型变量变化、神经网络适应和潜在空间适应三种适应策略,并讨论了它们在多大程度上保留了地质内容。我们利用一个真实的储层模型来研究实际情况下的问题。数值实验表明,潜空间自适应方法能提供最稳定、最准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信