Pratik Sharma, Devam Awasare, Bishal Jaiswal, S. Mohan, N. Abinaya, Ishan S. Darwhekar, A. Svr, B. Amrutur, Aditya Gopalan, Parimal Parag, Himanshu Tyagi
{"title":"On the Latency in Vehicular Control using Video Streaming over Wi-Fi","authors":"Pratik Sharma, Devam Awasare, Bishal Jaiswal, S. Mohan, N. Abinaya, Ishan S. Darwhekar, A. Svr, B. Amrutur, Aditya Gopalan, Parimal Parag, Himanshu Tyagi","doi":"10.1109/NCC48643.2020.9056067","DOIUrl":null,"url":null,"abstract":"We consider the use of Wi-Fi (IEEE 802.11n/r) network for remote control of a vehicle using video transmission on the uplink and control signals for the actuator on the downlink. We have setup a network with multiple access points (AP) providing indoor and outdoor coverage, which connects an unmanned ground vehicle (UGV) to a remote command center. Additionally, our setup includes a redundant IEEE 802.11p link for sending control messages over downlink with high reliability and low latency. We study the end-to-end communication delay and complete a latency profiling for each sub-component, including the video codec and the Wi-Fi links. Furthermore, we provide guidelines for practical design choices including the optimal configuration of the scanning process during handoffs and the codec parameters for delay optimization. Overall, our proposed configuration reduces the end-to-end delay significantly in comparison with the default configuration.","PeriodicalId":183772,"journal":{"name":"2020 National Conference on Communications (NCC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC48643.2020.9056067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We consider the use of Wi-Fi (IEEE 802.11n/r) network for remote control of a vehicle using video transmission on the uplink and control signals for the actuator on the downlink. We have setup a network with multiple access points (AP) providing indoor and outdoor coverage, which connects an unmanned ground vehicle (UGV) to a remote command center. Additionally, our setup includes a redundant IEEE 802.11p link for sending control messages over downlink with high reliability and low latency. We study the end-to-end communication delay and complete a latency profiling for each sub-component, including the video codec and the Wi-Fi links. Furthermore, we provide guidelines for practical design choices including the optimal configuration of the scanning process during handoffs and the codec parameters for delay optimization. Overall, our proposed configuration reduces the end-to-end delay significantly in comparison with the default configuration.