PROUD: PaRallel OUtlier Detection for Streams

Theodoros Toliopoulos, Christos Bellas, A. Gounaris, A. Papadopoulos
{"title":"PROUD: PaRallel OUtlier Detection for Streams","authors":"Theodoros Toliopoulos, Christos Bellas, A. Gounaris, A. Papadopoulos","doi":"10.1145/3318464.3384688","DOIUrl":null,"url":null,"abstract":"We introduce PROUD, standing for PaRallel OUtlier Detection for streams, which is an extensible engine for continuous multi-parameter parallel distance-based outlier (or anomaly) detection tailored to big data streams. PROUD is built on top of Flink. It defines a simple API for data ingestion. It supports a variety of parallel techniques, including novel ones, for continuous outlier detection that can be easily configured. In addition, it graphically reports metrics of interest and stores main results into a permanent store to enable future analysis. It can be easily extended to support additional techniques. Finally, it is publicly provided in open-source.","PeriodicalId":436122,"journal":{"name":"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318464.3384688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We introduce PROUD, standing for PaRallel OUtlier Detection for streams, which is an extensible engine for continuous multi-parameter parallel distance-based outlier (or anomaly) detection tailored to big data streams. PROUD is built on top of Flink. It defines a simple API for data ingestion. It supports a variety of parallel techniques, including novel ones, for continuous outlier detection that can be easily configured. In addition, it graphically reports metrics of interest and stores main results into a permanent store to enable future analysis. It can be easily extended to support additional techniques. Finally, it is publicly provided in open-source.
骄傲:并行异常检测流
我们介绍了PROUD,即PaRallel OUtlier Detection for streams,这是一个可扩展的引擎,用于为大数据流量身定制的连续多参数并行的基于距离的异常(或异常)检测。PROUD是建立在Flink之上的。它为数据摄取定义了一个简单的API。它支持多种并行技术,包括新的并行技术,可以轻松配置的连续异常值检测。此外,它以图形方式报告感兴趣的指标,并将主要结果存储到永久存储中,以便将来进行分析。它可以很容易地扩展以支持其他技术。最后,它以开放源代码的形式公开提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信