{"title":"Robust Real Time Moving People Detection in Surveillance Scenarios","authors":"Álvaro García-Martín, J. Sanchez","doi":"10.1109/AVSS.2010.33","DOIUrl":null,"url":null,"abstract":"In this paper an improved real time algorithm for detectingpedestrians in surveillance video is proposed. Thealgorithm is based on people appearance and defines a personmodel as the union of four models of body parts. Firstly,motion segmentation is performed to detect moving pixels.Then, moving regions are extracted and tracked. Finally,the detected moving objects are classified as human or nonhumanobjects. In order to test and validate the algorithm,we have developed a dataset containing annotated surveillancesequences of different complexity levels focused onthe pedestrians detection. Experimental results over thisdataset show that our approach performs considerably wellat real time and even better than other real and non-realtime approaches from the state of art.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
In this paper an improved real time algorithm for detectingpedestrians in surveillance video is proposed. Thealgorithm is based on people appearance and defines a personmodel as the union of four models of body parts. Firstly,motion segmentation is performed to detect moving pixels.Then, moving regions are extracted and tracked. Finally,the detected moving objects are classified as human or nonhumanobjects. In order to test and validate the algorithm,we have developed a dataset containing annotated surveillancesequences of different complexity levels focused onthe pedestrians detection. Experimental results over thisdataset show that our approach performs considerably wellat real time and even better than other real and non-realtime approaches from the state of art.