A Regression-Based Analytic Model for Dynamic Resource Provisioning of Multi-Tier Applications

Qi Zhang, L. Cherkasova, E. Smirni
{"title":"A Regression-Based Analytic Model for Dynamic Resource Provisioning of Multi-Tier Applications","authors":"Qi Zhang, L. Cherkasova, E. Smirni","doi":"10.1109/ICAC.2007.1","DOIUrl":null,"url":null,"abstract":"The multi-tier implementation has become the industry standard for developing scalable client-server enterprise applications. Since these applications are performance sensitive, effective models for dynamic resource provisioning and for delivering quality of service to these applications become critical. Workloads in such environments are characterized by client sessions of interdependent requests with changing transaction mix and load over time, making model adaptivity to the observed workload changes a critical requirement for model effectiveness. In this work, we apply a regression-based approximation of the CPU demand of client transactions on a given hardware. Then we use this approximation in an analytic model of a simple network of queues, each queue representing a tier, and show the approximation's effectiveness for modeling diverse workloads with a changing transaction mix over time. Using the TPC- W benchmark and its three different transaction mixes we investigate factors that impact the efficiency and accuracy of the proposed performance prediction models. Experimental results show that this regression-based approach provides a simple and powerful solution for efficient capacity planning and resource provisioning of multi-tier applications under changing workload conditions.","PeriodicalId":179923,"journal":{"name":"Fourth International Conference on Autonomic Computing (ICAC'07)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"296","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Autonomic Computing (ICAC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2007.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 296

Abstract

The multi-tier implementation has become the industry standard for developing scalable client-server enterprise applications. Since these applications are performance sensitive, effective models for dynamic resource provisioning and for delivering quality of service to these applications become critical. Workloads in such environments are characterized by client sessions of interdependent requests with changing transaction mix and load over time, making model adaptivity to the observed workload changes a critical requirement for model effectiveness. In this work, we apply a regression-based approximation of the CPU demand of client transactions on a given hardware. Then we use this approximation in an analytic model of a simple network of queues, each queue representing a tier, and show the approximation's effectiveness for modeling diverse workloads with a changing transaction mix over time. Using the TPC- W benchmark and its three different transaction mixes we investigate factors that impact the efficiency and accuracy of the proposed performance prediction models. Experimental results show that this regression-based approach provides a simple and powerful solution for efficient capacity planning and resource provisioning of multi-tier applications under changing workload conditions.
基于回归的多层应用动态资源配置分析模型
多层实现已经成为开发可伸缩客户机-服务器企业应用程序的行业标准。由于这些应用程序对性能敏感,因此动态资源供应和向这些应用程序交付服务质量的有效模型变得至关重要。这种环境中的工作负载的特点是,相互依赖的请求的客户机会话随着时间的推移而改变事务组合和负载,这使得模型能够适应观察到的工作负载变化,这是模型有效性的一个关键要求。在这项工作中,我们在给定硬件上应用基于回归的客户端事务CPU需求近似值。然后,我们在一个简单队列网络的分析模型中使用这个近似值,每个队列代表一个层,并展示了该近似值在建模随时间变化的事务组合的各种工作负载时的有效性。使用TPC- W基准及其三种不同的事务组合,我们研究了影响所提出的性能预测模型的效率和准确性的因素。实验结果表明,这种基于回归的方法为多层应用在工作负载变化条件下的高效容量规划和资源分配提供了一种简单而强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信