Enriching Pre-Trained Language Model with Multi-Task Learning and Context for Medical Concept Normalization

Yiling Cao, Lu Fang, Zhongguang Zheng
{"title":"Enriching Pre-Trained Language Model with Multi-Task Learning and Context for Medical Concept Normalization","authors":"Yiling Cao, Lu Fang, Zhongguang Zheng","doi":"10.1145/3560071.3560084","DOIUrl":null,"url":null,"abstract":"Herein, we focus on the problem of automatically medical concept normalization in social media posts. Specifically, the task is to map medical mentions within social media texts to the suitable concepts in a reference knowledge base. We propose a new medical concept normalization model using multi-task learning. The model uses BioBERT to encode mentions and their contexts, and classifies their concept IDs and types of mention. We evaluate our approach on two datasets and achieve new state-of-the-art performance.","PeriodicalId":249276,"journal":{"name":"Proceedings of the 2022 International Conference on Intelligent Medicine and Health","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Intelligent Medicine and Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3560071.3560084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we focus on the problem of automatically medical concept normalization in social media posts. Specifically, the task is to map medical mentions within social media texts to the suitable concepts in a reference knowledge base. We propose a new medical concept normalization model using multi-task learning. The model uses BioBERT to encode mentions and their contexts, and classifies their concept IDs and types of mention. We evaluate our approach on two datasets and achieve new state-of-the-art performance.
基于多任务学习和语境的医学概念规范化预训练语言模型
本文主要研究社交媒体帖子中医学概念的自动归一化问题。具体来说,任务是将社交媒体文本中的医学提及映射到参考知识库中的适当概念。提出了一种基于多任务学习的医学概念归一化模型。该模型使用BioBERT对提及及其上下文进行编码,并对提及的概念id和类型进行分类。我们在两个数据集上评估了我们的方法,并实现了新的最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信