Subspace video stabilization based on matrix transformation and Bezier curve

Zheng Zhao, Xiaohong Ma
{"title":"Subspace video stabilization based on matrix transformation and Bezier curve","authors":"Zheng Zhao, Xiaohong Ma","doi":"10.1109/ICACI.2016.7449837","DOIUrl":null,"url":null,"abstract":"Video stabilization improves video quality by removing undesirable jitter to receive stable and comfortable video sequences. This paper proposes a new approach for subspace video stabilization. To make feature trajectories factorization more accurate, we segment feature trajectories into fragments to construct local trajectory matrices, then obtain smooth trajectories based on subspace constraint, matrix transformation and Bezier curve. Finally, according to the original feature points and the final corresponding stable feature points, we use mesh warp to receive high-quality and plausible videos. Experiments show that our method can generate comparable results with regard to some other state-of-the-art video stabilization methods, furthermore in some scenes our results are better than theirs.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Video stabilization improves video quality by removing undesirable jitter to receive stable and comfortable video sequences. This paper proposes a new approach for subspace video stabilization. To make feature trajectories factorization more accurate, we segment feature trajectories into fragments to construct local trajectory matrices, then obtain smooth trajectories based on subspace constraint, matrix transformation and Bezier curve. Finally, according to the original feature points and the final corresponding stable feature points, we use mesh warp to receive high-quality and plausible videos. Experiments show that our method can generate comparable results with regard to some other state-of-the-art video stabilization methods, furthermore in some scenes our results are better than theirs.
基于矩阵变换和Bezier曲线的子空间视频稳像
视频稳定通过消除不受欢迎的抖动来提高视频质量,以接收稳定和舒适的视频序列。本文提出了一种新的子空间视频稳像方法。为了提高特征轨迹分解的精度,我们将特征轨迹分割成碎片构造局部轨迹矩阵,然后基于子空间约束、矩阵变换和Bezier曲线得到光滑轨迹。最后,根据原始特征点和最终对应的稳定特征点,利用网格经纱获得高质量、可信的视频。实验表明,我们的方法可以产生与其他一些最先进的视频稳定方法相当的结果,并且在某些场景中我们的结果比他们的更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信