An efficient TDOA and FDOA based source localization algorithm via importance sampling

Yunlong Wang, Ying Wu, Yuan Shen
{"title":"An efficient TDOA and FDOA based source localization algorithm via importance sampling","authors":"Yunlong Wang, Ying Wu, Yuan Shen","doi":"10.1109/ICCChina.2017.8330494","DOIUrl":null,"url":null,"abstract":"The location and velocity information gives crucial impacts and supports in many applications. In this paper, we address the the problem of source localization based on time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) measurements. The nonlinear and nonconvex maximum likelihood estimation can be approximated by Monte Carlo importance sampling technique. We derive the importance function analogous to Gaussian distribution based on Fisher information matrix (FIM) where the global convergence can be guaranteed with sufficient samples. Then we consider the source localization under sensor location uncertainties. The localization information of both sensors and source is jointly estimated by importance sampling. The simulation results illustrate that the proposed method is superior than other existing methods and it can attain the Cramér-Rao lower bound at moderate noise levels.","PeriodicalId":418396,"journal":{"name":"2017 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChina.2017.8330494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The location and velocity information gives crucial impacts and supports in many applications. In this paper, we address the the problem of source localization based on time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) measurements. The nonlinear and nonconvex maximum likelihood estimation can be approximated by Monte Carlo importance sampling technique. We derive the importance function analogous to Gaussian distribution based on Fisher information matrix (FIM) where the global convergence can be guaranteed with sufficient samples. Then we consider the source localization under sensor location uncertainties. The localization information of both sensors and source is jointly estimated by importance sampling. The simulation results illustrate that the proposed method is superior than other existing methods and it can attain the Cramér-Rao lower bound at moderate noise levels.
基于重要采样的高效TDOA和FDOA源定位算法
位置和速度信息在许多应用中具有重要的影响和支持作用。本文研究了基于到达时间差(TDOA)和到达频率差(FDOA)测量的信号源定位问题。非线性非凸极大似然估计可用蒙特卡罗重要抽样技术逼近。我们基于Fisher信息矩阵(FIM)导出了类似高斯分布的重要函数,在足够的样本下可以保证全局收敛。然后考虑传感器位置不确定条件下的源定位问题。通过重要采样的方法对传感器和源的定位信息进行联合估计。仿真结果表明,该方法优于现有方法,能在中等噪声水平下达到cramsamr - rao下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信