Identification of FIR Systems with Quantized Input and Binary-Valued Observations Under A Priori Parameter Constraint

Tian Yuan, Quanjun Liu, Jin Guo
{"title":"Identification of FIR Systems with Quantized Input and Binary-Valued Observations Under A Priori Parameter Constraint","authors":"Tian Yuan, Quanjun Liu, Jin Guo","doi":"10.23919/CCC50068.2020.9188983","DOIUrl":null,"url":null,"abstract":"This paper investigates the identification of FIR (finite impulse response) systems with quantized input and binary-valued observations. First, we obtain the ML (maximum likelihood) function of the available data, and construct an estimation algorithm of the unknown parameters when solving the maximum likelihood solution by transforming it into the solution to a set of linear equations. Secondly, based on the weighted least squares optimization technique, we establish the corresponding estimation algorithms in the case that the unknown parameters respectively satisfy a priori equality constraint and inequality constraint. Then, the AIC criterion is designed for estimating the order of the system. Finally, a numerical simulation example is employed to verify the effectiveness of the theoretical results obtained.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9188983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper investigates the identification of FIR (finite impulse response) systems with quantized input and binary-valued observations. First, we obtain the ML (maximum likelihood) function of the available data, and construct an estimation algorithm of the unknown parameters when solving the maximum likelihood solution by transforming it into the solution to a set of linear equations. Secondly, based on the weighted least squares optimization technique, we establish the corresponding estimation algorithms in the case that the unknown parameters respectively satisfy a priori equality constraint and inequality constraint. Then, the AIC criterion is designed for estimating the order of the system. Finally, a numerical simulation example is employed to verify the effectiveness of the theoretical results obtained.
先验参数约束下具有量化输入和二值观测的FIR系统辨识
研究了具有量化输入和二值观测值的有限脉冲响应系统的辨识问题。首先,我们获得了可用数据的ML(极大似然)函数,并通过将极大似然解转化为一组线性方程的解,构造了求解最大似然解时未知参数的估计算法。其次,基于加权最小二乘优化技术,在未知参数分别满足先验等式约束和不等式约束的情况下,建立了相应的估计算法;然后,设计了AIC准则来估计系统的阶数。最后,通过数值仿真算例验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信