Automated Data-Driven Physics Discovery of Turbine Component Damage

Sheng Zhang, Ryan Jacobs, Sayan Ghosh, Ambarish Kulkarni, Liping Wang
{"title":"Automated Data-Driven Physics Discovery of Turbine Component Damage","authors":"Sheng Zhang, Ryan Jacobs, Sayan Ghosh, Ambarish Kulkarni, Liping Wang","doi":"10.1115/gt2022-83372","DOIUrl":null,"url":null,"abstract":"\n We propose an automated physics discovery algorithm for turbine component damage modeling. Our algorithm utilizes operational data of a mechanical component and discovers an interpretable symbolic formula that describes the physics. We illustrate our algorithm through two numerical examples and demonstrate that the discovered formulas can predict the future damage accurately. Our framework is flexible and easily applicable to all areas of science and engineering. With cutting-edge machine learning tools, researchers can simply input the experimental data and then the physics formulas are printed out automatically. The application of this new algorithm may reduce the time spent on research and development of physics models significantly, while achieving almost the best accuracy in prediction.","PeriodicalId":171593,"journal":{"name":"Volume 8B: Structures and Dynamics — Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Structures and Dynamics — Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2022-83372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an automated physics discovery algorithm for turbine component damage modeling. Our algorithm utilizes operational data of a mechanical component and discovers an interpretable symbolic formula that describes the physics. We illustrate our algorithm through two numerical examples and demonstrate that the discovered formulas can predict the future damage accurately. Our framework is flexible and easily applicable to all areas of science and engineering. With cutting-edge machine learning tools, researchers can simply input the experimental data and then the physics formulas are printed out automatically. The application of this new algorithm may reduce the time spent on research and development of physics models significantly, while achieving almost the best accuracy in prediction.
涡轮部件损伤的自动数据驱动物理发现
提出了一种用于涡轮部件损伤建模的自动物理发现算法。我们的算法利用一个机械部件的操作数据,并发现一个可解释的符号公式来描述物理。通过两个算例验证了算法的有效性,结果表明所建立的公式能够准确地预测未来的损伤情况。我们的框架是灵活的,很容易适用于科学和工程的所有领域。利用先进的机器学习工具,研究人员可以简单地输入实验数据,然后自动打印出物理公式。新算法的应用可以显著减少物理模型的研发时间,同时在预测上达到几乎最好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信