Proportional representation to increase data utility in k-anonymous tables

Fabien Viton, Clémence Mauger, Gilles Dequen, Jean-Luc Guérin, G. L. Mahec
{"title":"Proportional representation to increase data utility in k-anonymous tables","authors":"Fabien Viton, Clémence Mauger, Gilles Dequen, Jean-Luc Guérin, G. L. Mahec","doi":"10.1109/ISCC53001.2021.9631457","DOIUrl":null,"url":null,"abstract":"The increasing number of published data has allowed the development of data mining, resting on the use of the data to extract knowledge. At the same time, to tackle privacy concerns, anonymization models such as k-anonymity have emerged. Because k-anonymity transforms original data, there is an impact on the utility of altered data for data mining. In this paper, we propose a new writing of the anonymous tables using an anonymization post-treatment. The proposed representation allows to keep more information on the distribution of the original values in the anonymous equivalence classes while being usable directly as input for neural networks for data mining purposes. We test our experimental protocol on two data sets from anonymization research field: Adult data set and an extract from the register of voters of Florida (USA). With these experiments, we show the superiority in data utility of our approach against classical approaches.","PeriodicalId":270786,"journal":{"name":"2021 IEEE Symposium on Computers and Communications (ISCC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC53001.2021.9631457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing number of published data has allowed the development of data mining, resting on the use of the data to extract knowledge. At the same time, to tackle privacy concerns, anonymization models such as k-anonymity have emerged. Because k-anonymity transforms original data, there is an impact on the utility of altered data for data mining. In this paper, we propose a new writing of the anonymous tables using an anonymization post-treatment. The proposed representation allows to keep more information on the distribution of the original values in the anonymous equivalence classes while being usable directly as input for neural networks for data mining purposes. We test our experimental protocol on two data sets from anonymization research field: Adult data set and an extract from the register of voters of Florida (USA). With these experiments, we show the superiority in data utility of our approach against classical approaches.
比例表示增加k-匿名表中的数据效用
越来越多的公开数据使得数据挖掘的发展成为可能,它依赖于使用数据来提取知识。与此同时,为了解决隐私问题,出现了k-anonymity等匿名化模型。由于k-匿名对原始数据进行了转换,因此对数据挖掘中更改数据的效用有影响。在本文中,我们提出了一种使用匿名化后处理的匿名表的新编写方法。所提出的表示允许保留匿名等价类中原始值分布的更多信息,同时可直接作为神经网络的数据挖掘目的的输入。我们在匿名化研究领域的两个数据集上测试了我们的实验方案:成人数据集和佛罗里达州(美国)选民登记册的摘录。通过这些实验,我们证明了我们的方法在数据效用上优于经典方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信