Targeting Policy-Compliers with Machine Learning: An Application to a Tax Rebate Programme in Italy

Monica Andini, Emanuele Ciani, G. de Blasio, Alessio D'Ignazio, V. Salvestrini
{"title":"Targeting Policy-Compliers with Machine Learning: An Application to a Tax Rebate Programme in Italy","authors":"Monica Andini, Emanuele Ciani, G. de Blasio, Alessio D'Ignazio, V. Salvestrini","doi":"10.2139/ssrn.3084031","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) can be a powerful tool to inform policy decisions. Those who are treated under a programme might have different propensities to put into practice the behaviour that the policymaker wants to incentivize. ML algorithms can be used to predict the policy-compliers; that is, those who are most likely to behave in the way desired by the policymaker. When the design of the programme is tailored to target the policy-compliers, the overall effectiveness of the policy is increased. This paper proposes an application of ML targeting that uses the massive tax rebate scheme introduced in Italy in 2014.","PeriodicalId":403078,"journal":{"name":"Public Economics: Fiscal Policies & Behavior of Economic Agents eJournal","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Public Economics: Fiscal Policies & Behavior of Economic Agents eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3084031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Machine Learning (ML) can be a powerful tool to inform policy decisions. Those who are treated under a programme might have different propensities to put into practice the behaviour that the policymaker wants to incentivize. ML algorithms can be used to predict the policy-compliers; that is, those who are most likely to behave in the way desired by the policymaker. When the design of the programme is tailored to target the policy-compliers, the overall effectiveness of the policy is increased. This paper proposes an application of ML targeting that uses the massive tax rebate scheme introduced in Italy in 2014.
用机器学习瞄准政策制定者:在意大利退税计划中的应用
机器学习(ML)可以成为为政策决策提供信息的强大工具。那些在计划下受到待遇的人,可能会有不同的倾向,把政策制定者想要激励的行为付诸实践。ML算法可用于预测策略编译器;也就是说,那些最有可能按照政策制定者所希望的方式行事的人。当方案的设计针对政策制定者进行调整时,政策的总体有效性就会提高。本文提出了一种ML瞄准的应用,该应用使用了2014年意大利引入的大规模退税计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信