Large-scale Partially Separable Function optimization Using Cooperative Coevolution and Competition Strategies

Yu Zhu, Li Zhang, Rushi Lan, Xiaonan Luo
{"title":"Large-scale Partially Separable Function optimization Using Cooperative Coevolution and Competition Strategies","authors":"Yu Zhu, Li Zhang, Rushi Lan, Xiaonan Luo","doi":"10.1109/ICACI.2019.8778451","DOIUrl":null,"url":null,"abstract":"Optimizing of the large-scale partially separable functions in the real world is a challenging task. In this paper, we devise a novel optimization method based on coevolution and competition strategies. the proposed method is adopted in two stages: 1) the differential grouping (DG) is used to decompose the original problems into several different subcomponents; 2)Competitive swarm optimizer (CSO) is used to optimize the subcomponents individually. Experimental results show that the combining of DG and CSO performs better than state-of-the-art metaheuristic methods on partially separable functions optimization.","PeriodicalId":213368,"journal":{"name":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2019.8778451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Optimizing of the large-scale partially separable functions in the real world is a challenging task. In this paper, we devise a novel optimization method based on coevolution and competition strategies. the proposed method is adopted in two stages: 1) the differential grouping (DG) is used to decompose the original problems into several different subcomponents; 2)Competitive swarm optimizer (CSO) is used to optimize the subcomponents individually. Experimental results show that the combining of DG and CSO performs better than state-of-the-art metaheuristic methods on partially separable functions optimization.
基于合作协同进化和竞争策略的大规模部分可分离函数优化
现实世界中大规模部分可分函数的优化是一项具有挑战性的任务。本文提出了一种基于协同进化和竞争策略的优化方法。该方法分两个阶段实施:1)采用差分分组(DG)将原始问题分解为若干不同的子组件;2)采用竞争群优化器(CSO)对子部件进行单独优化。实验结果表明,在部分可分函数优化问题上,DG和CSO相结合的方法优于最先进的元启发式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信