Cuckoo-Beetle Swarm Search for Nonlinear Optimization: A New Meta-Heuristic Algorithm

Guancheng Zhou, Dechao Chen, Rensu Gu, Shuai Li
{"title":"Cuckoo-Beetle Swarm Search for Nonlinear Optimization: A New Meta-Heuristic Algorithm","authors":"Guancheng Zhou, Dechao Chen, Rensu Gu, Shuai Li","doi":"10.1109/icsai53574.2021.9664216","DOIUrl":null,"url":null,"abstract":"Conventional meta-heuristic algorithms have problems being trapped in local optima because of premature convergence and insufficient global search ability in solving nonlinear optimization. This brief proposes a new meta-heuristic algorithm, called cuckoo-beetle swarm search (CBSS) to handle this issue in nonlinear optimization. The proposed algorithm imitates the breeding habits of cuckoos and the food foraging characteristics of beetles. Levy flight is combined with particle search velocity to improve the global optimization of CBSS. Nonlinear benchmark functions are tested to verify the accuracy, search speed, and stability of the CBSS algorithm. The numerical verification proves that the proposed algorithm has better robustness and global search capability than its counterparts.","PeriodicalId":131284,"journal":{"name":"2021 7th International Conference on Systems and Informatics (ICSAI)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icsai53574.2021.9664216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional meta-heuristic algorithms have problems being trapped in local optima because of premature convergence and insufficient global search ability in solving nonlinear optimization. This brief proposes a new meta-heuristic algorithm, called cuckoo-beetle swarm search (CBSS) to handle this issue in nonlinear optimization. The proposed algorithm imitates the breeding habits of cuckoos and the food foraging characteristics of beetles. Levy flight is combined with particle search velocity to improve the global optimization of CBSS. Nonlinear benchmark functions are tested to verify the accuracy, search speed, and stability of the CBSS algorithm. The numerical verification proves that the proposed algorithm has better robustness and global search capability than its counterparts.
布谷鸟-甲虫群搜索非线性优化:一种新的元启发式算法
传统的元启发式算法在求解非线性优化问题时由于过早收敛和全局搜索能力不足而陷入局部最优。本文提出了一种新的元启发式算法——杜鹃-甲虫群搜索算法(CBSS)来解决非线性优化中的这一问题。该算法模拟了杜鹃的繁殖习性和甲虫的觅食特征。将Levy飞行与粒子搜索速度相结合,提高了CBSS的全局寻优性。非线性基准函数测试验证了CBSS算法的准确性、搜索速度和稳定性。数值验证表明,该算法具有较好的鲁棒性和全局搜索能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信