Robust features for spoofing detection

A. Sathya, J. Swetha, K. A. Das, Kuruvachan K. George, C. S. Kumar, J. Aravinth
{"title":"Robust features for spoofing detection","authors":"A. Sathya, J. Swetha, K. A. Das, Kuruvachan K. George, C. S. Kumar, J. Aravinth","doi":"10.1109/ICACCI.2016.7732417","DOIUrl":null,"url":null,"abstract":"It is very important to enhance the robustness of Automatic Speaker Verification (ASV) systems against spoofing attacks. One of the recent research efforts in this direction is to derive features that are robust against spoofed speech. In this work, we experiment with the use of Cosine Normalised Phase-based Cepstral Coefficients (CNPCC) as inputs to a Gaussian Mixture Model (GMM) back-end classifier and compare its results with systems developed using the popular short term cepstral features, Mel-Frequency Cepstral Coefficients (MFCC) and Power Normalised Cepstral Coefficients (PNCC), and show that CNPCC outperforms the other features. We then perform a score level fusion of the system developed using CNPCC with that of the systems using MFCC and PNCC to further enhance the performance. We use known attacks to train and optimise the system and unknown attacks to evaluate and present the results.","PeriodicalId":371328,"journal":{"name":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCI.2016.7732417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

It is very important to enhance the robustness of Automatic Speaker Verification (ASV) systems against spoofing attacks. One of the recent research efforts in this direction is to derive features that are robust against spoofed speech. In this work, we experiment with the use of Cosine Normalised Phase-based Cepstral Coefficients (CNPCC) as inputs to a Gaussian Mixture Model (GMM) back-end classifier and compare its results with systems developed using the popular short term cepstral features, Mel-Frequency Cepstral Coefficients (MFCC) and Power Normalised Cepstral Coefficients (PNCC), and show that CNPCC outperforms the other features. We then perform a score level fusion of the system developed using CNPCC with that of the systems using MFCC and PNCC to further enhance the performance. We use known attacks to train and optimise the system and unknown attacks to evaluate and present the results.
用于欺骗检测的鲁棒特性
提高自动说话人验证(ASV)系统对欺骗攻击的鲁棒性是非常重要的。在这个方向上,最近的一个研究成果是推导出对欺骗语音具有鲁棒性的特征。在这项工作中,我们尝试使用余弦归一化基于相位的倒谱系数(CNPCC)作为高斯混合模型(GMM)后端分类器的输入,并将其结果与使用流行的短期倒谱特征、Mel-Frequency倒谱系数(MFCC)和功率归一化倒谱系数(PNCC)开发的系统进行比较,并表明CNPCC优于其他特征。然后,我们将使用CNPCC开发的系统与使用MFCC和PNCC的系统进行评分级融合,以进一步提高性能。我们使用已知的攻击来训练和优化系统,使用未知的攻击来评估和呈现结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信