A proposed data fusion architecture for micro-zone analysis and data mining

K. McCarty, Milos Manic
{"title":"A proposed data fusion architecture for micro-zone analysis and data mining","authors":"K. McCarty, Milos Manic","doi":"10.1109/ISRCS.2012.6309296","DOIUrl":null,"url":null,"abstract":"Micro-zone analysis involves use of data fusion and data mining techniques in order to understand the relative impact of many different variables. Data Fusion requires the ability to combine or “fuse” date from multiple data sources. Data mining involves the application of sophisticated algorithms such as Neural Networks and Decision Trees, to describe micro-zone behavior and predict future values based upon past values. One of the difficulties encountered in developing generic time series or other data mining techniques for micro-zone analysis is the wide variability of the data sets available for analysis. This presents challenges all the way from the data gathering stage to results presentation. This paper presents an architecture designed and used to facilitate the collection of disparate data sets well suited for data fusion and data mining. Results show this architecture provides a flexible, dynamic framework for the capture and storage of a myriad of dissimilar data sets and can serve as a foundation from which to build a complete data fusion architecture.","PeriodicalId":227062,"journal":{"name":"2012 5th International Symposium on Resilient Control Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 5th International Symposium on Resilient Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRCS.2012.6309296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Micro-zone analysis involves use of data fusion and data mining techniques in order to understand the relative impact of many different variables. Data Fusion requires the ability to combine or “fuse” date from multiple data sources. Data mining involves the application of sophisticated algorithms such as Neural Networks and Decision Trees, to describe micro-zone behavior and predict future values based upon past values. One of the difficulties encountered in developing generic time series or other data mining techniques for micro-zone analysis is the wide variability of the data sets available for analysis. This presents challenges all the way from the data gathering stage to results presentation. This paper presents an architecture designed and used to facilitate the collection of disparate data sets well suited for data fusion and data mining. Results show this architecture provides a flexible, dynamic framework for the capture and storage of a myriad of dissimilar data sets and can serve as a foundation from which to build a complete data fusion architecture.
一种用于微区分析和数据挖掘的数据融合体系结构
微区分析涉及使用数据融合和数据挖掘技术,以便了解许多不同变量的相对影响。数据融合需要能够组合或“融合”来自多个数据源的数据。数据挖掘涉及神经网络和决策树等复杂算法的应用,以描述微区域行为并根据过去的值预测未来的值。在开发用于微区分析的一般时间序列或其他数据挖掘技术时遇到的困难之一是可供分析的数据集具有很大的可变性。这给从数据收集阶段到结果展示的整个过程带来了挑战。本文提出了一种体系结构,用于促进不同数据集的收集,非常适合于数据融合和数据挖掘。结果表明,该体系结构为捕获和存储大量不同的数据集提供了灵活、动态的框架,并可作为构建完整数据融合体系结构的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信