Footnote-based document image classification using 1D convolutional neural networks and histograms

Mohamed Mhiri, Sherif Abuelwafa, Christian Desrosiers, M. Cheriet
{"title":"Footnote-based document image classification using 1D convolutional neural networks and histograms","authors":"Mohamed Mhiri, Sherif Abuelwafa, Christian Desrosiers, M. Cheriet","doi":"10.1109/IPTA.2017.8310140","DOIUrl":null,"url":null,"abstract":"Classifying historical document images is a challenging task due to the high variability of their content and the common presence of degradation in these documents. For scholars, footnotes are essential to analyze and investigate historical documents. In this work, a novel classification method is proposed for detecting and segmenting footnotes from document images. Our proposed method utilizes horizontal histograms of text lines as inputs to a 1D Convolutional Neural Network (CNN). Experiments on a dataset of historical documents show the proposed method to be effective in dealing with the high variability of footnotes, even while using a small training set. Our method yielded an overall F-measure of 56.36% and a precision of 89.76%, outperforming significantly existing approaches for this task.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Classifying historical document images is a challenging task due to the high variability of their content and the common presence of degradation in these documents. For scholars, footnotes are essential to analyze and investigate historical documents. In this work, a novel classification method is proposed for detecting and segmenting footnotes from document images. Our proposed method utilizes horizontal histograms of text lines as inputs to a 1D Convolutional Neural Network (CNN). Experiments on a dataset of historical documents show the proposed method to be effective in dealing with the high variability of footnotes, even while using a small training set. Our method yielded an overall F-measure of 56.36% and a precision of 89.76%, outperforming significantly existing approaches for this task.
基于脚注的文档图像分类使用一维卷积神经网络和直方图
对历史文档图像进行分类是一项具有挑战性的任务,因为它们的内容具有高度可变性,并且这些文档中普遍存在退化。对学者来说,脚注是分析和研究历史文献的必要条件。在这项工作中,提出了一种新的分类方法来检测和分割文档图像中的脚注。我们提出的方法利用文本行的水平直方图作为1D卷积神经网络(CNN)的输入。在历史文献数据集上的实验表明,即使使用较小的训练集,该方法也能有效地处理脚注的高可变性。我们的方法总体f值为56.36%,精度为89.76%,明显优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信