PCS: A Productive Computational Science Platform

David Ojika, A. Gordon-Ross, H. Lam, Shinjae Yoo, Younggang Cui, Zhihua Dong, K. V. Dam, Seyong Lee, T. Kurth
{"title":"PCS: A Productive Computational Science Platform","authors":"David Ojika, A. Gordon-Ross, H. Lam, Shinjae Yoo, Younggang Cui, Zhihua Dong, K. V. Dam, Seyong Lee, T. Kurth","doi":"10.1109/HPCS48598.2019.9188108","DOIUrl":null,"url":null,"abstract":"As modern supercomputers continue to be increasingly heterogeneous with diverse computational accelerators (graphics processing units (GPUs), fieldprogrammable gate arrays (FPGAs), application specific integrated circuits (ASICs), etc.), software becomes a critical design aspect. Exploiting this new computational power requires increased software design time and effort to make valuable scientific discovery in the face of the complicated programming environments introduced by these accelerators. To address these challenges, we propose unifying multiple programming models into a single programming environment to facilitate large-scale, accelerator-aware, heterogeneous computing for next-generation scientific applications. This paper presents PCS, a productive computational science platform for cluster-scale heterogeneous computing. Focusing FPGAs, we describe the key concepts of the PCS platform and differentiate PCS from the current state-of-the-art, propose a new multi-FPGA architecture for graph-centric workloads (e.g., deep learning, etc.) with discussions on ongoing work.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As modern supercomputers continue to be increasingly heterogeneous with diverse computational accelerators (graphics processing units (GPUs), fieldprogrammable gate arrays (FPGAs), application specific integrated circuits (ASICs), etc.), software becomes a critical design aspect. Exploiting this new computational power requires increased software design time and effort to make valuable scientific discovery in the face of the complicated programming environments introduced by these accelerators. To address these challenges, we propose unifying multiple programming models into a single programming environment to facilitate large-scale, accelerator-aware, heterogeneous computing for next-generation scientific applications. This paper presents PCS, a productive computational science platform for cluster-scale heterogeneous computing. Focusing FPGAs, we describe the key concepts of the PCS platform and differentiate PCS from the current state-of-the-art, propose a new multi-FPGA architecture for graph-centric workloads (e.g., deep learning, etc.) with discussions on ongoing work.
PCS:一个多产的计算科学平台
随着现代超级计算机的计算加速器(图形处理单元(gpu)、现场可编程门阵列(fpga)、专用集成电路(asic)等)越来越多样化,软件成为一个关键的设计方面。利用这种新的计算能力需要增加软件设计时间和努力,以便在面对这些加速器引入的复杂编程环境时做出有价值的科学发现。为了应对这些挑战,我们提出将多个编程模型统一到一个编程环境中,以促进下一代科学应用的大规模、加速器感知、异构计算。PCS是一种面向集群规模异构计算的高效计算科学平台。以fpga为重点,我们描述了PCS平台的关键概念,并将PCS与当前最先进的产品区分开来,为以图形为中心的工作负载(例如,深度学习等)提出了一种新的多fpga架构,并讨论了正在进行的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信