{"title":"Connector-less SiC power modules with integrated shunt — Low-profile design for low inductance and low cost","authors":"M. Meisser, H. Demattio, D. Hamilton, T. Blank","doi":"10.1109/EPE.2016.7695282","DOIUrl":null,"url":null,"abstract":"This paper presents the design, manufacture and characterization of connector-less 1200 V SiC MOSFET half-bridge power modules based on AlN DCB substrate. The modules contain four MOSFETs and no external antiparallel diodes. They are rated for a current of 40 A and include a shunt. Static and dynamic measurement results are presented. Multiphysics simulations are used to validate the measured data. The modules show a power path inductance below 3 nH. The power rating of the implemented chip shunt resistors is sufficient for the performed characterizations but requires revision. The switching loss at turn-on is 340 μJ at 23 A, 800 V, the turn-off loss is well below 50 μJ, principally allowing MHz operation in resonant mode.","PeriodicalId":119358,"journal":{"name":"2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2016.7695282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents the design, manufacture and characterization of connector-less 1200 V SiC MOSFET half-bridge power modules based on AlN DCB substrate. The modules contain four MOSFETs and no external antiparallel diodes. They are rated for a current of 40 A and include a shunt. Static and dynamic measurement results are presented. Multiphysics simulations are used to validate the measured data. The modules show a power path inductance below 3 nH. The power rating of the implemented chip shunt resistors is sufficient for the performed characterizations but requires revision. The switching loss at turn-on is 340 μJ at 23 A, 800 V, the turn-off loss is well below 50 μJ, principally allowing MHz operation in resonant mode.