Metaheurística Híbrida Algoritmo Genético-Clustering Search Para A Otimização Em Sistemas De Produção Flow Shop Permutacional

Geraldo Browne Ribeiro Filho, M. S. Nagano, L. A. N. Lorena
{"title":"Metaheurística Híbrida Algoritmo Genético-Clustering Search Para A Otimização Em Sistemas De Produção Flow Shop Permutacional","authors":"Geraldo Browne Ribeiro Filho, M. S. Nagano, L. A. N. Lorena","doi":"10.21528/LNLM-vol4-no1-art4","DOIUrl":null,"url":null,"abstract":"This paper deals with the Permutation Flow Shop scheduling problem with the objective of minimizing total flow time, therefore reducing in-process inventory. A new hybrid metaheuristic, Genetic Algorithm Cluster Search, is proposed for the scheduling problem solution. The proposed method is compared with the bests results reported in the literature. Experimental results show that the new method provides better solutions regarding the solution quality.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/LNLM-vol4-no1-art4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the Permutation Flow Shop scheduling problem with the objective of minimizing total flow time, therefore reducing in-process inventory. A new hybrid metaheuristic, Genetic Algorithm Cluster Search, is proposed for the scheduling problem solution. The proposed method is compared with the bests results reported in the literature. Experimental results show that the new method provides better solutions regarding the solution quality.
混合元启发式遗传算法聚类搜索在流动车间排列生产系统中的优化
本文研究了以最小化总流时间为目标的置换流水车间调度问题,从而减少在制品库存。针对调度问题,提出了一种新的混合元启发式算法——遗传算法聚类搜索。将该方法与文献报道的最佳结果进行了比较。实验结果表明,新方法在溶液质量方面提供了更好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信