Fault detection and isolation based on nonlinear analytical redundancy applied to an induction machine

A. Amrane, A. Larabi, A. Aitouche
{"title":"Fault detection and isolation based on nonlinear analytical redundancy applied to an induction machine","authors":"A. Amrane, A. Larabi, A. Aitouche","doi":"10.1109/ICOSC.2017.7958716","DOIUrl":null,"url":null,"abstract":"This paper deals with the design of a fault detection and isolation (FDI) of the sensors for an induction machine using nonlinear analytical redundancy (NLAR). This paper investigates the detection and isolation of faults using elimination of unknown variables of the system and in particularly the unknown system states. The induction machine (IM), it is highly nonlinear, multivariable, time-varying system and particularly when subject to the faults, it is difficult to detected them by linear approaches. The nonlinear parity space algorithm is able to detect and isolate sensor faults such IM speed and stator currents or actuator faults (stator voltage). In order to prove the accuracy of approaches studying in this work, simulation results will be given.","PeriodicalId":113395,"journal":{"name":"2017 6th International Conference on Systems and Control (ICSC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Systems and Control (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2017.7958716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper deals with the design of a fault detection and isolation (FDI) of the sensors for an induction machine using nonlinear analytical redundancy (NLAR). This paper investigates the detection and isolation of faults using elimination of unknown variables of the system and in particularly the unknown system states. The induction machine (IM), it is highly nonlinear, multivariable, time-varying system and particularly when subject to the faults, it is difficult to detected them by linear approaches. The nonlinear parity space algorithm is able to detect and isolate sensor faults such IM speed and stator currents or actuator faults (stator voltage). In order to prove the accuracy of approaches studying in this work, simulation results will be given.
基于非线性分析冗余的感应电机故障检测与隔离
本文研究了用非线性分析冗余设计感应电机传感器故障检测与隔离的方法。本文研究了利用消除系统的未知变量,特别是系统的未知状态来检测和隔离故障的方法。感应电机是一个高度非线性、多变量、时变的系统,特别是在发生故障时,用线性方法很难检测到故障。非线性奇偶空间算法能够检测和隔离传感器故障如转速和定子电流或执行器故障(定子电压)。为了证明本文所研究方法的准确性,将给出仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信