PROPERTIES OF INTEGRALS WHICH HAVE THE TYPE OF DERIVATIVES OF VOLUME POTENTIALS FOR DEGENERATED $\overrightarrow{2\lowercase{b}}$ - PARABOLIC EQUATION OF KOLMOGOROV TYPE

V. Dron’, I. Medyns’kyi
{"title":"PROPERTIES OF INTEGRALS WHICH HAVE THE TYPE OF DERIVATIVES OF VOLUME POTENTIALS FOR DEGENERATED $\\overrightarrow{2\\lowercase{b}}$ - PARABOLIC EQUATION OF KOLMOGOROV TYPE","authors":"V. Dron’, I. Medyns’kyi","doi":"10.31861/bmj2021.02.01","DOIUrl":null,"url":null,"abstract":"In weight Holder spaces it is studied the smoothness of integrals, which have the structure\nand properties of derivatives of volume potentials which generated by fundamental solution of the Cauchy problem for degenerated $\\overrightarrow{2b}$-parabolic equation of Kolmogorov type. The coefficients in this equation depend only on the time variable. Special distances and norms are used for constructing of the weight Holder spaces.\nThe results of the paper can be used for establishing of the correct solvability of the Cauchy problem and estimates of solutions of the given non-homogeneous equation in corresponding weight Holder spaces.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2021.02.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In weight Holder spaces it is studied the smoothness of integrals, which have the structure and properties of derivatives of volume potentials which generated by fundamental solution of the Cauchy problem for degenerated $\overrightarrow{2b}$-parabolic equation of Kolmogorov type. The coefficients in this equation depend only on the time variable. Special distances and norms are used for constructing of the weight Holder spaces. The results of the paper can be used for establishing of the correct solvability of the Cauchy problem and estimates of solutions of the given non-homogeneous equation in corresponding weight Holder spaces.
退化的柯尔莫哥罗夫型抛物方程的体积势导数型积分的性质
在权重保持空间中,研究了退化的$\ overrighrow {2b}$-抛物型方程的柯西问题的基本解所产生的体积势的导数的结构和性质的积分的光滑性。这个方程中的系数只与时间变量有关。利用特殊的距离和范数来构造权重保持空间。本文的结果可用于建立柯西问题的正确可解性和相应权保持空间中给定非齐次方程解的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信