Covariance Matching for PDE-based Contour Tracking

Bo Ma, Yuwei Wu
{"title":"Covariance Matching for PDE-based Contour Tracking","authors":"Bo Ma, Yuwei Wu","doi":"10.1109/ICIG.2011.88","DOIUrl":null,"url":null,"abstract":"This paper presents a novel formulation for object tracking. We model the second-order statistics of image regions and perform covariance matching under the variational level set framework. Specifically, covariance matrix is adopted as a visual object representation for partial differential equation (PDE) based contour tracking. Log-Euclidean calculus is used as a covariance distance metric instead of Euclidean distance which is unsuitable for measuring the similarities between covariance matrices, because the matrices typically lie on a non-Euclidean manifold. A novel image energy functional is formulated by minimizing the distance metrics between the candidate object region and a given template, and maximizing the ones between the background region and the template. The corresponding gradient flow is then derived according to a variational approach, enabling PDE-based visual tracking. Experiments on synthetic and real video sequences prove the validity of the proposed method.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a novel formulation for object tracking. We model the second-order statistics of image regions and perform covariance matching under the variational level set framework. Specifically, covariance matrix is adopted as a visual object representation for partial differential equation (PDE) based contour tracking. Log-Euclidean calculus is used as a covariance distance metric instead of Euclidean distance which is unsuitable for measuring the similarities between covariance matrices, because the matrices typically lie on a non-Euclidean manifold. A novel image energy functional is formulated by minimizing the distance metrics between the candidate object region and a given template, and maximizing the ones between the background region and the template. The corresponding gradient flow is then derived according to a variational approach, enabling PDE-based visual tracking. Experiments on synthetic and real video sequences prove the validity of the proposed method.
基于pde的轮廓跟踪的协方差匹配
本文提出了一种新的目标跟踪公式。对图像区域的二阶统计量进行建模,并在变分水平集框架下进行协方差匹配。具体而言,采用协方差矩阵作为基于偏微分方程(PDE)的轮廓跟踪的可视化对象表示。由于协方差矩阵通常位于非欧几里德流形上,因此欧几里德距离不适用于度量协方差矩阵之间的相似度,故采用对数-欧几里德微积分作为协方差距离度量。通过最小化候选目标区域与给定模板之间的距离度量,最大化背景区域与模板之间的距离度量,建立了一种新的图像能量函数。然后根据变分方法推导相应的梯度流,实现基于pde的视觉跟踪。在合成视频序列和真实视频序列上的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信