Prediction of University Student Performance Based on Tracer Study Dataset Using Artificial Neural Network

Zahrina Aulia Adriani, Irma Palupi
{"title":"Prediction of University Student Performance Based on Tracer Study Dataset Using Artificial Neural Network","authors":"Zahrina Aulia Adriani, Irma Palupi","doi":"10.31603/komtika.v5i2.5901","DOIUrl":null,"url":null,"abstract":"In order to increase student performance, several universities use machine learning to analyze and evaluate their data so that it enables to improve the quality of education in the university. To get a new insight from the tracer study dataset as the relevance between university performance and student capability with business and industries work, the author will develop a model to predict student performance based on the tracer study dataset using Artificial Neural Network (ANN). For obtaining attributes that correspond to labels, Phi Coefficient Correlation will be used to select the attributes with high correlation as Feature Selection. The author is also performing the oversampling method using Synthetic Minority Oversampling Technique (SMOTE) because this dataset is imbalanced and evaluates the model using K-Fold Cross-Validation. According to K-Fold Cross Validation, the result shows that K = 3 has a low standard deviation of evaluation score and it's the best candidate of K to split the dataset. The average standard deviation is 0.038 for all score evaluations (Accuracy, Precision, Recall, and F-1 Score). After applied SMOTE to treating the imbalanced dataset with the data splitting 65 training data and 35 testing data, the accuracy value increases by 10% from 0.77 to 0.87.","PeriodicalId":292404,"journal":{"name":"Jurnal Komtika (Komputasi dan Informatika)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Komtika (Komputasi dan Informatika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31603/komtika.v5i2.5901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to increase student performance, several universities use machine learning to analyze and evaluate their data so that it enables to improve the quality of education in the university. To get a new insight from the tracer study dataset as the relevance between university performance and student capability with business and industries work, the author will develop a model to predict student performance based on the tracer study dataset using Artificial Neural Network (ANN). For obtaining attributes that correspond to labels, Phi Coefficient Correlation will be used to select the attributes with high correlation as Feature Selection. The author is also performing the oversampling method using Synthetic Minority Oversampling Technique (SMOTE) because this dataset is imbalanced and evaluates the model using K-Fold Cross-Validation. According to K-Fold Cross Validation, the result shows that K = 3 has a low standard deviation of evaluation score and it's the best candidate of K to split the dataset. The average standard deviation is 0.038 for all score evaluations (Accuracy, Precision, Recall, and F-1 Score). After applied SMOTE to treating the imbalanced dataset with the data splitting 65 training data and 35 testing data, the accuracy value increases by 10% from 0.77 to 0.87.
基于示踪学习数据集的人工神经网络大学生成绩预测
为了提高学生的成绩,一些大学使用机器学习来分析和评估他们的数据,从而提高大学的教育质量。为了从示踪剂研究数据中获得大学成绩和学生能力与商业和工业工作之间的相关性的新见解,作者将开发一个基于示踪剂研究数据集的模型,使用人工神经网络(ANN)来预测学生的成绩。为了获得与标签对应的属性,将使用Phi Coefficient Correlation选择相关性高的属性作为Feature Selection。由于该数据集不平衡,作者还使用合成少数过采样技术(SMOTE)执行过采样方法,并使用K-Fold交叉验证评估模型。通过K- fold交叉验证,结果表明K = 3具有较低的评价分数标准差,是K分割数据集的最佳候选。所有评分评估(准确率、精密度、召回率和F-1分数)的平均标准差为0.038。将SMOTE应用于分割65个训练数据和35个测试数据的不平衡数据集后,准确率值从0.77提高到0.87,提高了10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信