CoAnomaly: Correlation Risk in Stock Market Anomalies

James Tengyu Guo
{"title":"CoAnomaly: Correlation Risk in Stock Market Anomalies","authors":"James Tengyu Guo","doi":"10.2139/ssrn.3110008","DOIUrl":null,"url":null,"abstract":"I propose a simple time-series risk measure in trading stock market anomalies, CoAnomaly, the time-varying average pairwise correlation among 34 anomalies, which helps to explain both the time-series and the cross-sectional anomaly return patterns. Since correlations among underlying assets determine the portfolio variance, CoAnomaly is an important state variable for arbitrageurs who hold diversified portfolios of anomalies to boost their performance. Empirically, I show that, first, CoAnomaly is persistent and forecasts long-run aggregate volatility of the diversified anomaly portfolio. Second, CoAnomaly positively predicts future average anomaly returns in the time series. Third, in the cross-section of these 34 anomaly portfolios, CoAnomaly carries a negative price of risk. These return patterns suggest that arbitrageurs take the time-varying correlation into account and their intertemporal hedging demand plays an important role in setting asset prices.","PeriodicalId":129035,"journal":{"name":"Empirical Asset Pricing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Asset Pricing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3110008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

I propose a simple time-series risk measure in trading stock market anomalies, CoAnomaly, the time-varying average pairwise correlation among 34 anomalies, which helps to explain both the time-series and the cross-sectional anomaly return patterns. Since correlations among underlying assets determine the portfolio variance, CoAnomaly is an important state variable for arbitrageurs who hold diversified portfolios of anomalies to boost their performance. Empirically, I show that, first, CoAnomaly is persistent and forecasts long-run aggregate volatility of the diversified anomaly portfolio. Second, CoAnomaly positively predicts future average anomaly returns in the time series. Third, in the cross-section of these 34 anomaly portfolios, CoAnomaly carries a negative price of risk. These return patterns suggest that arbitrageurs take the time-varying correlation into account and their intertemporal hedging demand plays an important role in setting asset prices.
协同异常:股票市场异常的相关风险
我提出了一个简单的时间序列风险度量交易股票市场异常,CoAnomaly, 34个异常之间的时变平均两两相关,这有助于解释时间序列和横截面异常的回报模式。由于标的资产之间的相关性决定了投资组合的方差,因此对于持有多样化的异常投资组合以提高其业绩的套利者来说,CoAnomaly是一个重要的状态变量。根据经验,我表明,首先,CoAnomaly是持续存在的,并且预测了多样化异常投资组合的长期总波动性。其次,CoAnomaly正预测未来时间序列的平均异常回报。第三,在这34个异常组合的横截面中,CoAnomaly的风险价格为负。这些收益模式表明,套利者考虑了时变相关性,他们的跨期对冲需求在设定资产价格方面发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信