A framework for reactive optimization in mobile ad hoc networks

D. W. McClary, V. Syrotiuk, M. Kulahci
{"title":"A framework for reactive optimization in mobile ad hoc networks","authors":"D. W. McClary, V. Syrotiuk, M. Kulahci","doi":"10.1109/INFTECH.2008.4621578","DOIUrl":null,"url":null,"abstract":"We present a framework to optimize the performance of a mobile ad hoc network over a wide range of operating conditions. It includes screening experiments to quantify the parameters and interactions among parameters influential to throughput. Profile-driven regression is applied to obtain a model of the non-linear behaviour of throughput. The intermediate models obtained in this modelling effort are used to adapt the parameters as the network conditions change, in order to maximize throughput. The improvements in throughput range from 10-26 times the use of the default parameter settings. The predictive accuracy of the model is monitored and used to update the model dynamically. The results indicate the framework may be useful for the optimization of dynamic systems of high dimension.","PeriodicalId":247264,"journal":{"name":"2008 1st International Conference on Information Technology","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 1st International Conference on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFTECH.2008.4621578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a framework to optimize the performance of a mobile ad hoc network over a wide range of operating conditions. It includes screening experiments to quantify the parameters and interactions among parameters influential to throughput. Profile-driven regression is applied to obtain a model of the non-linear behaviour of throughput. The intermediate models obtained in this modelling effort are used to adapt the parameters as the network conditions change, in order to maximize throughput. The improvements in throughput range from 10-26 times the use of the default parameter settings. The predictive accuracy of the model is monitored and used to update the model dynamically. The results indicate the framework may be useful for the optimization of dynamic systems of high dimension.
移动自组织网络中的响应式优化框架
我们提出了一个框架来优化移动自组织网络在各种操作条件下的性能。它包括筛选实验,以量化影响通量的参数和参数之间的相互作用。应用剖面驱动的回归来获得吞吐量的非线性行为模型。在此建模工作中获得的中间模型用于根据网络条件的变化调整参数,以最大限度地提高吞吐量。使用默认参数设置,吞吐量的改进范围为10-26倍。监测模型的预测精度,并用于动态更新模型。结果表明,该框架可用于高维动态系统的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信