{"title":"Bayesian extensions of non-negative matrix factorization","authors":"R. Schachtner, G. Pöppel, E. Lang","doi":"10.1109/CIP.2010.5604130","DOIUrl":null,"url":null,"abstract":"Although non-negative matrix factorization has become a popular data analysis tool for non-negative data sets, there are still some issues remaining partly unsolved. We investigate the potential of Bayesian techniques towards the solution of two important open questions concerning uniqueness and actual number of sources underlying the data. We derive a general Bayesian optimality condition for NMF solutions and elaborate on the criterion for the Gaussian likelihood case. We further derive a variational Bayes NMF algorithm for the Gaussian likelihood using rectified Gaussian prior distributions and study its ability to estimate the true number of sources in a toy data set.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Although non-negative matrix factorization has become a popular data analysis tool for non-negative data sets, there are still some issues remaining partly unsolved. We investigate the potential of Bayesian techniques towards the solution of two important open questions concerning uniqueness and actual number of sources underlying the data. We derive a general Bayesian optimality condition for NMF solutions and elaborate on the criterion for the Gaussian likelihood case. We further derive a variational Bayes NMF algorithm for the Gaussian likelihood using rectified Gaussian prior distributions and study its ability to estimate the true number of sources in a toy data set.