Bayesian extensions of non-negative matrix factorization

R. Schachtner, G. Pöppel, E. Lang
{"title":"Bayesian extensions of non-negative matrix factorization","authors":"R. Schachtner, G. Pöppel, E. Lang","doi":"10.1109/CIP.2010.5604130","DOIUrl":null,"url":null,"abstract":"Although non-negative matrix factorization has become a popular data analysis tool for non-negative data sets, there are still some issues remaining partly unsolved. We investigate the potential of Bayesian techniques towards the solution of two important open questions concerning uniqueness and actual number of sources underlying the data. We derive a general Bayesian optimality condition for NMF solutions and elaborate on the criterion for the Gaussian likelihood case. We further derive a variational Bayes NMF algorithm for the Gaussian likelihood using rectified Gaussian prior distributions and study its ability to estimate the true number of sources in a toy data set.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Although non-negative matrix factorization has become a popular data analysis tool for non-negative data sets, there are still some issues remaining partly unsolved. We investigate the potential of Bayesian techniques towards the solution of two important open questions concerning uniqueness and actual number of sources underlying the data. We derive a general Bayesian optimality condition for NMF solutions and elaborate on the criterion for the Gaussian likelihood case. We further derive a variational Bayes NMF algorithm for the Gaussian likelihood using rectified Gaussian prior distributions and study its ability to estimate the true number of sources in a toy data set.
非负矩阵分解的贝叶斯扩展
虽然非负矩阵分解已成为非负数据集的一种流行的数据分析工具,但仍有一些问题尚未得到部分解决。我们研究了贝叶斯技术在解决关于数据的唯一性和实际数量的两个重要开放问题方面的潜力。我们导出了NMF解的一般贝叶斯最优性条件,并详细说明了高斯似然情况下的判据。我们进一步使用修正高斯先验分布推导了高斯似然的变分贝叶斯NMF算法,并研究了其估计玩具数据集中真实源数的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信