Dyadic lifting wavelet based signal detection

K. Kuzume, T. Tabusa
{"title":"Dyadic lifting wavelet based signal detection","authors":"K. Kuzume, T. Tabusa","doi":"10.1109/ICAIPR.2016.7585219","DOIUrl":null,"url":null,"abstract":"Local regularities of a signal contain important information such as edges in an image and QRS complexes in an Electrocardiogram (ECG). In order to detect such local regularities in the signal, wavelet transform has been focused on as a powerful tool for signal processing applications. Wavelet maxima at the time in which the signal abruptly changes are usually large in amplitude. However, with only the magnitude of the wavelet maxima the features of the signal cannot be known in detail. Mallat et al. proposed the Lipchitz regularity for observing signal cross scales in multiresolution signal analysis, but its computational cost was relatively expensive. This paper presents a novel method for signal detection using lifting dyadic wavelet transform, which has the time-invariant property. The lifting wavelet parameters contained in Swelden's formula were tuned, adapting them to the signals to be detected. The method for tuning these parameters was to learn the features of the target signals in the multiresolution analysis. To evaluate our methods we applied them to detect the QRS complexes contained in an ECG. The results showed that our methods were useful to detect target signals accurately.","PeriodicalId":127231,"journal":{"name":"2016 Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIPR.2016.7585219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Local regularities of a signal contain important information such as edges in an image and QRS complexes in an Electrocardiogram (ECG). In order to detect such local regularities in the signal, wavelet transform has been focused on as a powerful tool for signal processing applications. Wavelet maxima at the time in which the signal abruptly changes are usually large in amplitude. However, with only the magnitude of the wavelet maxima the features of the signal cannot be known in detail. Mallat et al. proposed the Lipchitz regularity for observing signal cross scales in multiresolution signal analysis, but its computational cost was relatively expensive. This paper presents a novel method for signal detection using lifting dyadic wavelet transform, which has the time-invariant property. The lifting wavelet parameters contained in Swelden's formula were tuned, adapting them to the signals to be detected. The method for tuning these parameters was to learn the features of the target signals in the multiresolution analysis. To evaluate our methods we applied them to detect the QRS complexes contained in an ECG. The results showed that our methods were useful to detect target signals accurately.
基于二进提升小波的信号检测
信号的局部规律包含了图像的边缘和心电图的QRS复合体等重要信息。为了检测信号中的这种局部规律,小波变换作为一种强大的信号处理工具得到了广泛的应用。信号突变时的小波极大值通常幅度很大。然而,仅用小波极大值的大小不能详细地了解信号的特征。Mallat等人提出了在多分辨率信号分析中观测信号交叉尺度的Lipchitz规则,但其计算成本相对昂贵。提出了一种基于提升二进小波变换的信号检测方法,该方法具有时不变特性。sweden公式中包含的提升小波参数经过调整,使其适应待检测的信号。对这些参数进行调优的方法是在多分辨率分析中了解目标信号的特征。为了评估我们的方法,我们应用它们来检测心电图中包含的QRS复合物。结果表明,该方法能够准确地检测出目标信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信