A Self-adaptive Genetic Algorithm Based on Region Balance Variation

Siyan Wang, Guoli Zhang
{"title":"A Self-adaptive Genetic Algorithm Based on Region Balance Variation","authors":"Siyan Wang, Guoli Zhang","doi":"10.1109/WKDD.2009.167","DOIUrl":null,"url":null,"abstract":"Proposing a new algorithm which is simple but effective. Using characteristic of biological evolution and common sense to design the selection operator, improve the variation method of the crossover probability and the mutation probability. Numerical experiments show that the new algorithm is more effective than the comparative algorithm in realizing the high convergence speed, convergence precision, reducing the convergence generation and good at keeping the stability of the adaptive genetic algorithm.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Proposing a new algorithm which is simple but effective. Using characteristic of biological evolution and common sense to design the selection operator, improve the variation method of the crossover probability and the mutation probability. Numerical experiments show that the new algorithm is more effective than the comparative algorithm in realizing the high convergence speed, convergence precision, reducing the convergence generation and good at keeping the stability of the adaptive genetic algorithm.
一种基于区域平衡变化的自适应遗传算法
提出了一种简单有效的新算法。利用生物进化特征和常识设计选择算子,改进交叉概率和突变概率的变异方法。数值实验表明,新算法在实现自适应遗传算法的高收敛速度、收敛精度、减少收敛生成和保持其稳定性方面比比较算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信