Akansh Jain, P. SathwikChadaga, N. Seshadri, R. D. Koilpillai
{"title":"Faster-Than-Nyquist Signaling with Constraints on Pulse Shapes","authors":"Akansh Jain, P. SathwikChadaga, N. Seshadri, R. D. Koilpillai","doi":"10.1109/PIMRC.2019.8904284","DOIUrl":null,"url":null,"abstract":"Faster-Than-Nyquist (FTN) Signaling is a non-orthogonal transmission scheme which violates the Nyquist zero-ISI criterion providing higher throughput and better spectral efficiency than a Nyquist transmission scheme. This comes with a cost of higher transceiver complexity. In this paper, we focus on understanding pulse shapes and their inter-symbol-interference (ISI) and show that, under certain conditions on pulse shapes and τ (time acceleration factor), the ISI can be avoided completely with the help of precoding. This leads to a symbol-by-symbol detection. Further, we extend this idea to Orthogonal Frequency Division Multiplexing (OFDM) FTN systems and show that, under certain conditions, the average performance of OFDM system reaches that of a Nyquist system. Finally, simulation results of the performance of precoded and non-precoded single carrier and OFDM FTN systems are compared to a Nyquist system.","PeriodicalId":412182,"journal":{"name":"2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2019.8904284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Faster-Than-Nyquist (FTN) Signaling is a non-orthogonal transmission scheme which violates the Nyquist zero-ISI criterion providing higher throughput and better spectral efficiency than a Nyquist transmission scheme. This comes with a cost of higher transceiver complexity. In this paper, we focus on understanding pulse shapes and their inter-symbol-interference (ISI) and show that, under certain conditions on pulse shapes and τ (time acceleration factor), the ISI can be avoided completely with the help of precoding. This leads to a symbol-by-symbol detection. Further, we extend this idea to Orthogonal Frequency Division Multiplexing (OFDM) FTN systems and show that, under certain conditions, the average performance of OFDM system reaches that of a Nyquist system. Finally, simulation results of the performance of precoded and non-precoded single carrier and OFDM FTN systems are compared to a Nyquist system.