Attribute-driven edge bundling for general graphs with applications in trail analysis

Vsevolod Peysakhovich, C. Hurter, A. Telea
{"title":"Attribute-driven edge bundling for general graphs with applications in trail analysis","authors":"Vsevolod Peysakhovich, C. Hurter, A. Telea","doi":"10.1109/PACIFICVIS.2015.7156354","DOIUrl":null,"url":null,"abstract":"Edge bundling methods reduce visual clutter of dense and occluded graphs. However, existing bundling techniques either ignore edge properties such as direction and data attributes, or are otherwise computationally not scalable, which makes them unsuitable for tasks such as exploration of large trajectory datasets. We present a new framework to generate bundled graph layouts according to any numerical edge attributes such as directions, timestamps or weights. We propose a GPU-based implementation linear in number of edges, which makes our algorithm applicable to large datasets. We demonstrate our method with applications in the analysis of aircraft trajectory datasets and eye-movement traces.","PeriodicalId":177381,"journal":{"name":"2015 IEEE Pacific Visualization Symposium (PacificVis)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2015.7156354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

Edge bundling methods reduce visual clutter of dense and occluded graphs. However, existing bundling techniques either ignore edge properties such as direction and data attributes, or are otherwise computationally not scalable, which makes them unsuitable for tasks such as exploration of large trajectory datasets. We present a new framework to generate bundled graph layouts according to any numerical edge attributes such as directions, timestamps or weights. We propose a GPU-based implementation linear in number of edges, which makes our algorithm applicable to large datasets. We demonstrate our method with applications in the analysis of aircraft trajectory datasets and eye-movement traces.
用于一般图的属性驱动边缘绑定,具有跟踪分析中的应用程序
边缘捆绑方法减少了密集和闭塞图的视觉杂乱。然而,现有的捆绑技术要么忽略边缘属性,如方向和数据属性,要么在计算上不可扩展,这使得它们不适合诸如探索大型轨迹数据集之类的任务。我们提出了一种新的框架,可以根据任何数值边属性(如方向、时间戳或权重)生成捆绑图布局。我们提出了一个基于gpu的线性边缘实现,这使得我们的算法适用于大型数据集。我们通过分析飞机轨迹数据集和眼动轨迹来演示我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信