StripNet

Guoxiang Qu, Wenwei Zhang, Zhe Wang, Xing Dai, Jianping Shi, Junjun He, Fei Li, Xiulan Zhang, Y. Qiao
{"title":"StripNet","authors":"Guoxiang Qu, Wenwei Zhang, Zhe Wang, Xing Dai, Jianping Shi, Junjun He, Fei Li, Xiulan Zhang, Y. Qiao","doi":"10.1145/3240508.3240553","DOIUrl":null,"url":null,"abstract":"In this work, we propose to study a special semantic segmentation problem where the targets are long and continuous strip patterns. Strip patterns widely exist in medical images and natural photos, such as retinal layers in OCT images and lanes on the roads, and segmentation of them has practical significance. Traditional pixel-level segmentation methods largely ignore the structure prior of strip patterns and thus easily suffer from the topological inconformity problem, such as holes and isolated islands in segmentation results. To tackle this problem, we design a novel deep framework, StripNet, that leverages the strong end-to-end learning ability of CNNs to predict the structured outputs as a sequence of boundary locations of the target strips. Specifically, StripNet decomposes the original segmentation problem into more easily solved local boundary-regression problems, and takes account of the topological constraints on the predicted boundaries. Moreover, our framework adopts a coarse-to-fine strategy and uses carefully designed heatmaps for training the boundary localization network. We examine StripNet on two challenging strip pattern segmentation tasks, retinal layer segmentation and lane detection. Extensive experiments demonstrate that StripNet achieves excellent results and outperforms state-of-the-art methods in both tasks.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this work, we propose to study a special semantic segmentation problem where the targets are long and continuous strip patterns. Strip patterns widely exist in medical images and natural photos, such as retinal layers in OCT images and lanes on the roads, and segmentation of them has practical significance. Traditional pixel-level segmentation methods largely ignore the structure prior of strip patterns and thus easily suffer from the topological inconformity problem, such as holes and isolated islands in segmentation results. To tackle this problem, we design a novel deep framework, StripNet, that leverages the strong end-to-end learning ability of CNNs to predict the structured outputs as a sequence of boundary locations of the target strips. Specifically, StripNet decomposes the original segmentation problem into more easily solved local boundary-regression problems, and takes account of the topological constraints on the predicted boundaries. Moreover, our framework adopts a coarse-to-fine strategy and uses carefully designed heatmaps for training the boundary localization network. We examine StripNet on two challenging strip pattern segmentation tasks, retinal layer segmentation and lane detection. Extensive experiments demonstrate that StripNet achieves excellent results and outperforms state-of-the-art methods in both tasks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信