{"title":"Heralded orthogonalisation of coherent states and their conversion to discrete-variable superpositions","authors":"R. Kruse, C. Silberhorn, T. Bartley","doi":"10.1515/qmetro-2017-0005","DOIUrl":null,"url":null,"abstract":"Abstract The nonorthogonality of coherent states is a fundamental property which prevents them from being perfectly and deterministically discriminated. Here, we present an experimentally feasible protocol for the probabilistic orthogonalisation of a pair of coherent states, independent of their amplitude and phase. In contrast to unambiguous state discrimination, a successful operation of our protocol is heralded without measuring the states. As such, they remain suitable for further manipulation and the obtained orthogonal states serve as a discretevariable basis. Therefore, our protocol doubles as a simple continuous-to-discrete variable converter, which may find application in hybrid continuous-discrete quantum information processing protocols.","PeriodicalId":421179,"journal":{"name":"Quantum Measurements and Quantum Metrology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Measurements and Quantum Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/qmetro-2017-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The nonorthogonality of coherent states is a fundamental property which prevents them from being perfectly and deterministically discriminated. Here, we present an experimentally feasible protocol for the probabilistic orthogonalisation of a pair of coherent states, independent of their amplitude and phase. In contrast to unambiguous state discrimination, a successful operation of our protocol is heralded without measuring the states. As such, they remain suitable for further manipulation and the obtained orthogonal states serve as a discretevariable basis. Therefore, our protocol doubles as a simple continuous-to-discrete variable converter, which may find application in hybrid continuous-discrete quantum information processing protocols.