Student clustering and learning atmosphere analysis based on trajectory data

Shujiao Wang, Yihong Hu, Yaqiong Liu, Zhigang Guo, Guochu Shou
{"title":"Student clustering and learning atmosphere analysis based on trajectory data","authors":"Shujiao Wang, Yihong Hu, Yaqiong Liu, Zhigang Guo, Guochu Shou","doi":"10.1109/ICCSE.2017.8085490","DOIUrl":null,"url":null,"abstract":"With the popularity of mobile Internet and the rapid development of data mining, we can collect users' behavior trajectory and find regularity from a large amount of data. In this paper, we use the WiCloud system to obtain students' trajectory information, and propose a spatial-temporal clustering method based on K-means algorithm, which clusters students into three types: study-oriented, enclosed type and active type. A method for analyzing students' learning atmosphere based on trajectory data is also proposed, with which we get different trends of campus students' learning atmosphere in different time periods among different types of users.","PeriodicalId":256055,"journal":{"name":"2017 12th International Conference on Computer Science and Education (ICCSE)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference on Computer Science and Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2017.8085490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the popularity of mobile Internet and the rapid development of data mining, we can collect users' behavior trajectory and find regularity from a large amount of data. In this paper, we use the WiCloud system to obtain students' trajectory information, and propose a spatial-temporal clustering method based on K-means algorithm, which clusters students into three types: study-oriented, enclosed type and active type. A method for analyzing students' learning atmosphere based on trajectory data is also proposed, with which we get different trends of campus students' learning atmosphere in different time periods among different types of users.
基于轨迹数据的学生聚类与学习氛围分析
随着移动互联网的普及和数据挖掘的快速发展,我们可以从大量的数据中收集用户的行为轨迹,并从中发现规律性。本文利用WiCloud系统获取学生轨迹信息,提出了一种基于K-means算法的时空聚类方法,将学生聚类为学习型、封闭型和主动型三种类型。提出了一种基于轨迹数据的学生学习氛围分析方法,得到了不同类型用户在不同时间段的不同校园学生学习氛围趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信