Visibility-polygon search and euclidean shortest paths

Takao Asano, T. Asano, L. Guibas, J. Hershberger, H. Imai
{"title":"Visibility-polygon search and euclidean shortest paths","authors":"Takao Asano, T. Asano, L. Guibas, J. Hershberger, H. Imai","doi":"10.1109/SFCS.1985.65","DOIUrl":null,"url":null,"abstract":"Consider a collection of disjoint polygons in the plane containing a total of n edges. We show how to build, in O(n2) time and space, a data structure from which in O(n) time we can compute the visibility polygon of a given point with respect to the polygon collection. As an application of this structure, the visibility graph of the given polygons can be constructed in O(n2) time and space. This implies that the shortest path that connects two points in the plane and avoids the polygons in our collection can be computed in O(n2) time, improving earlier O(n2 log n) results.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"132","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 132

Abstract

Consider a collection of disjoint polygons in the plane containing a total of n edges. We show how to build, in O(n2) time and space, a data structure from which in O(n) time we can compute the visibility polygon of a given point with respect to the polygon collection. As an application of this structure, the visibility graph of the given polygons can be constructed in O(n2) time and space. This implies that the shortest path that connects two points in the plane and avoids the polygons in our collection can be computed in O(n2) time, improving earlier O(n2 log n) results.
可见多边形搜索和欧氏最短路径
考虑平面上包含n条边的不相交多边形的集合。我们展示了如何在O(n2)时间和空间内构建一个数据结构,从中我们可以在O(n)时间内计算给定点相对于多边形集合的可见性多边形。作为该结构的应用,给定多边形的可见性图可以在O(n2)的时间和空间内构造。这意味着连接平面上两点并避免我们集合中多边形的最短路径可以在O(n2)时间内计算出来,从而改进了之前的结果O(n2 log n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信