Clinical data preprocessing and case studies of POMDP for TCM treatment knowledge discovery

Kai Liu, Xuezhong Zhou, Yan Feng, Jie Liu
{"title":"Clinical data preprocessing and case studies of POMDP for TCM treatment knowledge discovery","authors":"Kai Liu, Xuezhong Zhou, Yan Feng, Jie Liu","doi":"10.1109/HealthCom.2012.6380056","DOIUrl":null,"url":null,"abstract":"Partially Observable Markov Decision Processes (POMDP) has been applied to induce sequential treatment scheme from Traditional Chinese Medicinal (TCM) clinical data. The data required by POMDP should be of rich structure and with heterogeneous variables. But sometimes there is large number of missing values in the real-world TCM clinical data set. This makes it difficult for data preprocessing. This paper designs a data preprocessing framework of TCM clinical data for POMDP applications. It significantly facilitates the process of sequential treatment scheme discovery through POMDP when applying the framework on TCM clinical cases of coronary heart disease and lung cancer. We also systematically analyze the sequential treatment scheme.","PeriodicalId":138952,"journal":{"name":"2012 IEEE 14th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 14th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2012.6380056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Partially Observable Markov Decision Processes (POMDP) has been applied to induce sequential treatment scheme from Traditional Chinese Medicinal (TCM) clinical data. The data required by POMDP should be of rich structure and with heterogeneous variables. But sometimes there is large number of missing values in the real-world TCM clinical data set. This makes it difficult for data preprocessing. This paper designs a data preprocessing framework of TCM clinical data for POMDP applications. It significantly facilitates the process of sequential treatment scheme discovery through POMDP when applying the framework on TCM clinical cases of coronary heart disease and lung cancer. We also systematically analyze the sequential treatment scheme.
面向中医治疗知识发现的POMDP临床数据预处理及案例研究
部分可观察马尔可夫决策过程(POMDP)应用于中医临床数据的序贯治疗方案诱导。POMDP所需的数据应具有丰富的结构和异构变量。但在实际中医临床数据集中,有时存在大量的缺失值。这给数据预处理带来了困难。本文设计了面向POMDP应用的中医临床数据预处理框架。将该框架应用于冠心病、肺癌中医临床病例,可显著促进POMDP序贯治疗方案的发现过程。并对序贯处理方案进行了系统分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信