Data Interpolation for Deep Learning based Encrypted Data Packet Classification

Pan Wang, Yiqing Zhou, Feng Ye, Hao Yue
{"title":"Data Interpolation for Deep Learning based Encrypted Data Packet Classification","authors":"Pan Wang, Yiqing Zhou, Feng Ye, Hao Yue","doi":"10.1109/ICCNC.2019.8685570","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to apply deep learning for encrypted data packet classification. Due to the complexity of deep learning, it is inefficient to process the entire data packet, which is usually padded with many zeros. In order to reduce data size for classification, while maintaining high accuracy, we develop data interpolation schemes to process data packets with various lengths to a fixed size. In particular, three data interpolation schemes based on nearest value, bilinear and bicubic interpolation are proposed. Experiments are conducted using an open source dataset. The evaluation results demonstrate that our data interpolation schemes can be applied to process input data for higher computational efficiency without losing classification accuracy.","PeriodicalId":161815,"journal":{"name":"2019 International Conference on Computing, Networking and Communications (ICNC)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2019.8685570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose to apply deep learning for encrypted data packet classification. Due to the complexity of deep learning, it is inefficient to process the entire data packet, which is usually padded with many zeros. In order to reduce data size for classification, while maintaining high accuracy, we develop data interpolation schemes to process data packets with various lengths to a fixed size. In particular, three data interpolation schemes based on nearest value, bilinear and bicubic interpolation are proposed. Experiments are conducted using an open source dataset. The evaluation results demonstrate that our data interpolation schemes can be applied to process input data for higher computational efficiency without losing classification accuracy.
基于深度学习的加密数据包分类数据插值
在本文中,我们提出将深度学习应用于加密数据包分类。由于深度学习的复杂性,处理整个数据包的效率很低,通常会填充许多零。为了减少分类的数据量,同时保持较高的准确率,我们开发了数据插值方案,将不同长度的数据包处理成固定的大小。特别提出了基于最近值、双线性和双三次插值的三种数据插值方案。实验是使用开源数据集进行的。评估结果表明,我们的数据插值方案可以在不损失分类精度的情况下提高输入数据的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信