Quality assurance plan for China collection 2.0 aerosol datasets

L. She, Yong Xue, J. Guang, Xingwei He, Chi Li
{"title":"Quality assurance plan for China collection 2.0 aerosol datasets","authors":"L. She, Yong Xue, J. Guang, Xingwei He, Chi Li","doi":"10.1109/IGARSS.2014.6947404","DOIUrl":null,"url":null,"abstract":"The inversion of atmospheric aerosol optical depth (AOD) using satellite data has always been a challenge topic in atmospheric research. In order to solve the aerosol retrieval problem over bright land surface, the Synergetic Retrieval of Aerosol Properties (SRAP) algorithm has been developed based on the synergetic using of the MODIS data of TERRA and AQUA satellites [1, 2]. In this paper we describe, in details, the quality assessment or quality assurance (QA) plan for AOD products derived using the SRAP algorithm. The pixel-based QA plan is to give a QA flag to every step of the process in the AOD retrieval. The quality assessment procedures include three common aspects: 1) input data resource flags, 2) retrieval processing flags, 3) product quality flags [3]. Besides, all AOD products are assigned a QA `confidence' flag (QAC) that represents the aggregation of all the individual QA flags. This QAC value ranges from 3 to 0, with QA = 3 indicating the retrievals of highest confidence and QA = 2/QA = 1 progressively lower confidence [4], and 0 means `bad' quality. These QA (QAC) flags indicate how the particular retrieval process should be considered. It is also used as a filter for expected quantitative value of the retrieval, or to provide weighting for aggregating/averaging computations [5]. All of the QA flags are stored as a \"bit flag\" scientific dataset array in which QA flags of each step are stored in particular bit positions.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6947404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The inversion of atmospheric aerosol optical depth (AOD) using satellite data has always been a challenge topic in atmospheric research. In order to solve the aerosol retrieval problem over bright land surface, the Synergetic Retrieval of Aerosol Properties (SRAP) algorithm has been developed based on the synergetic using of the MODIS data of TERRA and AQUA satellites [1, 2]. In this paper we describe, in details, the quality assessment or quality assurance (QA) plan for AOD products derived using the SRAP algorithm. The pixel-based QA plan is to give a QA flag to every step of the process in the AOD retrieval. The quality assessment procedures include three common aspects: 1) input data resource flags, 2) retrieval processing flags, 3) product quality flags [3]. Besides, all AOD products are assigned a QA `confidence' flag (QAC) that represents the aggregation of all the individual QA flags. This QAC value ranges from 3 to 0, with QA = 3 indicating the retrievals of highest confidence and QA = 2/QA = 1 progressively lower confidence [4], and 0 means `bad' quality. These QA (QAC) flags indicate how the particular retrieval process should be considered. It is also used as a filter for expected quantitative value of the retrieval, or to provide weighting for aggregating/averaging computations [5]. All of the QA flags are stored as a "bit flag" scientific dataset array in which QA flags of each step are stored in particular bit positions.
中国收集2.0气溶胶数据集的质量保证计划
利用卫星资料反演大气气溶胶光学深度(AOD)一直是大气研究中的一个挑战性课题。为了解决明亮地表气溶胶反演问题,在TERRA和AQUA卫星MODIS数据协同利用的基础上,提出了气溶胶特性协同反演(SRAP)算法[1,2]。本文详细描述了利用SRAP算法推导出的AOD产品质量评估或质量保证(QA)计划。基于像素的QA计划是为AOD检索过程的每个步骤提供一个QA标志。质量评价程序包括三个常见方面:1)输入数据资源标志,2)检索处理标志,3)产品质量标志[3]。此外,所有AOD产品都被分配了一个QA“置信度”标志(QAC),它代表了所有单个QA标志的集合。这个QAC值的范围从3到0,其中QA = 3表示最高置信度的检索,QA = 2/QA = 1表示置信度逐渐降低[4],0表示“坏”质量。这些QA (QAC)标志表明应该如何考虑特定的检索过程。它也被用作预期检索定量值的过滤器,或为聚合/平均计算提供权重[5]。所有QA标志都存储为“位标志”科学数据集数组,其中每个步骤的QA标志都存储在特定的位位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信