Using Self-Organizing Map and Data Mining Measurements to Improve Thai-English Statistical Machine Translation

Singha Wongdeethai, Jumpol Polvichai, N. Netjinda
{"title":"Using Self-Organizing Map and Data Mining Measurements to Improve Thai-English Statistical Machine Translation","authors":"Singha Wongdeethai, Jumpol Polvichai, N. Netjinda","doi":"10.1109/ICISA.2011.5772395","DOIUrl":null,"url":null,"abstract":"The objective of this work is improving for Statistical Machine (SMT) by using Self - Organizing MAP (SOM). In general we have 2 processes for Training and Translating. Training process is use for preparing resource from a number of bilingual corpuses, which are used for translating process. But, we still have a lot of irrelevant resource of data. Major method for this research is highlighted on new SOM Method for filtering on irrelevant data off from final translation model as much as possible. The initial result identify that using SOM for filtering process is able to filtering out incorrect pairing more efficient than general statistical method. Hence, the better statistical translation model can be created. In assumption, the efficiency of Thai-English SMT could be improved from using this improve statistical model.","PeriodicalId":425210,"journal":{"name":"2011 International Conference on Information Science and Applications","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Information Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2011.5772395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The objective of this work is improving for Statistical Machine (SMT) by using Self - Organizing MAP (SOM). In general we have 2 processes for Training and Translating. Training process is use for preparing resource from a number of bilingual corpuses, which are used for translating process. But, we still have a lot of irrelevant resource of data. Major method for this research is highlighted on new SOM Method for filtering on irrelevant data off from final translation model as much as possible. The initial result identify that using SOM for filtering process is able to filtering out incorrect pairing more efficient than general statistical method. Hence, the better statistical translation model can be created. In assumption, the efficiency of Thai-English SMT could be improved from using this improve statistical model.
使用自组织地图和数据挖掘度量改进泰英统计机器翻译
本研究的目的是利用自组织MAP (SOM)对统计机(SMT)进行改进。一般来说,我们有培训和翻译两个过程。培训过程用于从大量双语语料库中准备资源,这些资源用于翻译过程。但是,我们仍然有很多不相关的数据资源。本研究的主要方法是采用新的SOM方法,尽可能地从最终翻译模型中过滤掉不相关的数据。初步结果表明,SOM在过滤过程中能够比一般统计方法更有效地过滤出不正确的配对。因此,可以创建更好的统计翻译模型。假设使用改进的统计模型可以提高泰英SMT的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信