Improving N-Finder technique for extracting endmembers

Mahmoud Maghrbay, R. Ammar, S. Rajasekaran
{"title":"Improving N-Finder technique for extracting endmembers","authors":"Mahmoud Maghrbay, R. Ammar, S. Rajasekaran","doi":"10.1109/ISSPIT.2011.6151533","DOIUrl":null,"url":null,"abstract":"N-FINDER algorithm is widely used for endmember extraction. One of the disadvantages of N-FINDER is that its implementations take long run time due to the relatively large computational complexity of N-FINDER. Successfully reducing the size of the input data set -the hyperspectral image - that the algorithm works on can reduce the overall run time of the algorithm. A method for successfully selecting the proper sample of the data set to work on is provided in this paper. Using this reduction technique, a faster and statistically more accurate version of N-FINDER is presented.","PeriodicalId":288042,"journal":{"name":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2011.6151533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

N-FINDER algorithm is widely used for endmember extraction. One of the disadvantages of N-FINDER is that its implementations take long run time due to the relatively large computational complexity of N-FINDER. Successfully reducing the size of the input data set -the hyperspectral image - that the algorithm works on can reduce the overall run time of the algorithm. A method for successfully selecting the proper sample of the data set to work on is provided in this paper. Using this reduction technique, a faster and statistically more accurate version of N-FINDER is presented.
改进N-Finder端元提取技术
N-FINDER算法被广泛用于端元提取。N-FINDER的缺点之一是,由于N-FINDER相对较大的计算复杂度,它的实现需要很长的运行时间。成功地减少算法工作的输入数据集(高光谱图像)的大小可以减少算法的总体运行时间。本文提供了一种成功地从数据集中选择合适样本的方法。利用这种约简技术,提出了一个更快、统计上更准确的N-FINDER版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信