SOLVING THE BILEVEL LINEAR PROGRAMMING PROBLEM USING THE MONTE CARLO METHOD

Ş. Constantinescu, Ion Mierluș-Mazilu
{"title":"SOLVING THE BILEVEL LINEAR PROGRAMMING PROBLEM USING THE MONTE CARLO METHOD","authors":"Ş. Constantinescu, Ion Mierluș-Mazilu","doi":"10.19062/1842-9238.2022.20.2.8","DOIUrl":null,"url":null,"abstract":"In this paper we propose to use the \"Monte Carlo\" method for solving bilevel linear programming (the bilevel linear programming problem – BLP problem). In the BLP problem, each decision maker tries to optimize their own objective function without considering the objective of the other party, but the decision of each party affects the objective value of the other party as the decision space. The existing methods for solving the BLP problem can be grouped into four categories: a) methods based on vertices enumeration; b) methods based on Kuhn-Tuck conditions; c) the fuzzy approach; d) metaheuristics methods. Starting from Gnedenko's theorem, this paper uses the \"Monte Carlo\" method to determine an approximate solution for the BLP problem. The numerical example presents the performance of the proposed approach.","PeriodicalId":158636,"journal":{"name":"Review of the Air Force Academy","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of the Air Force Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19062/1842-9238.2022.20.2.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose to use the "Monte Carlo" method for solving bilevel linear programming (the bilevel linear programming problem – BLP problem). In the BLP problem, each decision maker tries to optimize their own objective function without considering the objective of the other party, but the decision of each party affects the objective value of the other party as the decision space. The existing methods for solving the BLP problem can be grouped into four categories: a) methods based on vertices enumeration; b) methods based on Kuhn-Tuck conditions; c) the fuzzy approach; d) metaheuristics methods. Starting from Gnedenko's theorem, this paper uses the "Monte Carlo" method to determine an approximate solution for the BLP problem. The numerical example presents the performance of the proposed approach.
用蒙特卡罗方法求解双层线性规划问题
本文提出用“蒙特卡罗”方法求解双层线性规划问题(双层线性规划问题- BLP问题)。在BLP问题中,每个决策者都试图优化自己的目标函数,而不考虑对方的目标,但每一方的决策都会影响对方作为决策空间的目标值。现有的求解BLP问题的方法可分为四类:a)基于顶点枚举的方法;b)基于Kuhn-Tuck条件的方法;C)模糊方法;D)元启发式方法。本文从格涅登科定理出发,利用“蒙特卡罗”方法确定了BLP问题的近似解。数值算例表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信