D. V. Nguyen, B. Vasic, M. Marcellin, S. K. Chilappagari
{"title":"Structured LDPC codes from permutation matrices free of small trapping sets","authors":"D. V. Nguyen, B. Vasic, M. Marcellin, S. K. Chilappagari","doi":"10.1109/CIG.2010.5592767","DOIUrl":null,"url":null,"abstract":"This paper introduces a class of structured low-density parity-check (LDPC) codes whose parity check matrices are arrays of permutation matrices. The permutation matrices are obtained from Latin squares and form a finite field under some matrix operations. They are chosen so that the Tanner graphs do not contain subgraphs harmful to iterative decoding algorithms. The construction of column-weight-three codes is presented. Although the codes are optimized for the Gallager A/B algorithm over the binary symmetric channel (BSC), their error performance is very good on the additive white Gaussian noise channel (AWGNC) as well.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
This paper introduces a class of structured low-density parity-check (LDPC) codes whose parity check matrices are arrays of permutation matrices. The permutation matrices are obtained from Latin squares and form a finite field under some matrix operations. They are chosen so that the Tanner graphs do not contain subgraphs harmful to iterative decoding algorithms. The construction of column-weight-three codes is presented. Although the codes are optimized for the Gallager A/B algorithm over the binary symmetric channel (BSC), their error performance is very good on the additive white Gaussian noise channel (AWGNC) as well.