Out-of-core cone beam reconstruction using multiple GPUs

Fumihiko Ino, Yusuke Okitsu, Taketo Kishi, S. Ohnishi, K. Hagihara
{"title":"Out-of-core cone beam reconstruction using multiple GPUs","authors":"Fumihiko Ino, Yusuke Okitsu, Taketo Kishi, S. Ohnishi, K. Hagihara","doi":"10.1109/ISBI.2010.5490055","DOIUrl":null,"url":null,"abstract":"This paper presents a graphics processing unit (GPU) based method capable of accelerating cone-beam reconstruction of large volume data, which cannot be entirely stored in video memory. Our method accelerates the Feldkamp, Davis and Kress (FDK) algorithm in a multi-GPU environment. We present how the entire volume can be efficiently decomposed into small portions to reduce the usage of video memory on each graphics card. Experimental results are also presented to understand the reconstruction throughput on an nVIDIA Tesla S1070 server. It takes approximately three minutes to reconstruct a 20483-voxel volume from 720 20482-pixel projections. The effective bandwidth of video memory reaches 137 GB/s per GPU, demonstrating a higher utilization of texture caches.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a graphics processing unit (GPU) based method capable of accelerating cone-beam reconstruction of large volume data, which cannot be entirely stored in video memory. Our method accelerates the Feldkamp, Davis and Kress (FDK) algorithm in a multi-GPU environment. We present how the entire volume can be efficiently decomposed into small portions to reduce the usage of video memory on each graphics card. Experimental results are also presented to understand the reconstruction throughput on an nVIDIA Tesla S1070 server. It takes approximately three minutes to reconstruct a 20483-voxel volume from 720 20482-pixel projections. The effective bandwidth of video memory reaches 137 GB/s per GPU, demonstrating a higher utilization of texture caches.
使用多个gpu的核外锥束重建
本文提出了一种基于图形处理单元(GPU)的方法,能够对不能完全存储在显存中的大容量数据加速锥束重建。我们的方法在多gpu环境下加速了FDK算法。我们介绍了如何有效地将整个卷分解成小部分,以减少每个图形卡上视频内存的使用。通过实验结果了解了在nVIDIA Tesla S1070服务器上的重构吞吐量。从720个20482像素的投影中重建一个20483体素的体积大约需要3分钟。每个GPU的显存有效带宽达到137 GB/s,纹理缓存的利用率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信