H. Sayadi, Mehrdad Aliasgari, Furkan Aydin, S. Potluri, Aydin Aysu, Jacky Edmonds, Sara Tehranipoor
{"title":"Towards AI-Enabled Hardware Security: Challenges and Opportunities","authors":"H. Sayadi, Mehrdad Aliasgari, Furkan Aydin, S. Potluri, Aydin Aysu, Jacky Edmonds, Sara Tehranipoor","doi":"10.1109/IOLTS56730.2022.9897507","DOIUrl":null,"url":null,"abstract":"Recent developments in Artificial Intelligence (AI) and Machine Learning (ML), driven by a substantial increase in the size of data in emerging computing systems, have led into successful applications of such intelligent techniques in various disciplines including security. Traditionally, integrity of data has been protected with various security protocols at the software level with the underlying hardware assumed to be secure. This assumption however is no longer true with an increasing number of attacks reported on the hardware. The emergence of new security threats (e.g., malware, side-channel attacks, etc.) requires patching/updating the software-based solutions that needs a vast amount of memory and hardware resources. Therefore, the security should be delegated to the underlying hardware, building a bottom-up solution for securing computing devices rather than treating it as an afterthought. This paper highlights the growing role of AI/ML techniques in hardware and architecture security field and provides insightful discussions on pressing challenges, opportunities, and future directions of designing accurate and efficient machine learning-based attacks and defense mechanisms in response to emerging hardware security vulnerabilities in modern computer systems and next generation of cryptosystems.","PeriodicalId":274595,"journal":{"name":"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS56730.2022.9897507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Recent developments in Artificial Intelligence (AI) and Machine Learning (ML), driven by a substantial increase in the size of data in emerging computing systems, have led into successful applications of such intelligent techniques in various disciplines including security. Traditionally, integrity of data has been protected with various security protocols at the software level with the underlying hardware assumed to be secure. This assumption however is no longer true with an increasing number of attacks reported on the hardware. The emergence of new security threats (e.g., malware, side-channel attacks, etc.) requires patching/updating the software-based solutions that needs a vast amount of memory and hardware resources. Therefore, the security should be delegated to the underlying hardware, building a bottom-up solution for securing computing devices rather than treating it as an afterthought. This paper highlights the growing role of AI/ML techniques in hardware and architecture security field and provides insightful discussions on pressing challenges, opportunities, and future directions of designing accurate and efficient machine learning-based attacks and defense mechanisms in response to emerging hardware security vulnerabilities in modern computer systems and next generation of cryptosystems.