Influence of image compression on cascade classifier components

Raimar Wagner, Markus Thom, R. Schweiger, Michael Gabb, Amrei Röhlig, A. Rothermel
{"title":"Influence of image compression on cascade classifier components","authors":"Raimar Wagner, Markus Thom, R. Schweiger, Michael Gabb, Amrei Röhlig, A. Rothermel","doi":"10.1109/SISY.2012.6339546","DOIUrl":null,"url":null,"abstract":"Bandwidth restrictions and increasing data volumes in the transmission path of automotive driver assistance systems make video compression unavoidable for future applications. Conventional image compression algorithms are solely tuned for optimal human perception. This paper studies the effect on features used in discriminative cascade classifiers for nighttime pedestrian desection, namely Haar wavelet features, Edge Orientation Histogram features and Standard deviation features. The induced error is modeled and evaluated for these feature classes. By approximating the noise on specific image feature instances, a re-adaption of the decision boundaries is possible. Knowing about the sensitivity of specific feature classes allows selecting a robust set of features prior to classifier training.","PeriodicalId":207630,"journal":{"name":"2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2012.6339546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Bandwidth restrictions and increasing data volumes in the transmission path of automotive driver assistance systems make video compression unavoidable for future applications. Conventional image compression algorithms are solely tuned for optimal human perception. This paper studies the effect on features used in discriminative cascade classifiers for nighttime pedestrian desection, namely Haar wavelet features, Edge Orientation Histogram features and Standard deviation features. The induced error is modeled and evaluated for these feature classes. By approximating the noise on specific image feature instances, a re-adaption of the decision boundaries is possible. Knowing about the sensitivity of specific feature classes allows selecting a robust set of features prior to classifier training.
图像压缩对级联分类器分量的影响
汽车驾驶辅助系统传输路径中的带宽限制和不断增加的数据量使得视频压缩在未来的应用中不可避免。传统的图像压缩算法仅针对最佳的人类感知进行了调整。本文研究了判别级联分类器中用于夜间行人检测的Haar小波特征、边缘方向直方图特征和标准差特征对特征的影响。对这些特征类的诱导误差进行了建模和评估。通过近似特定图像特征实例上的噪声,可以重新适应决策边界。了解特定特征类的敏感性可以在分类器训练之前选择一组鲁棒的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信