Exploiting NLOS Bias Correlation in Cooperative Localization

Yunlong Wang, Kai Gu, Ying Wu, Wei Dai, Yuan Shen
{"title":"Exploiting NLOS Bias Correlation in Cooperative Localization","authors":"Yunlong Wang, Kai Gu, Ying Wu, Wei Dai, Yuan Shen","doi":"10.1109/ICCW.2019.8756706","DOIUrl":null,"url":null,"abstract":"Network localization is challenging in line-of-sight (LOS)/non-line-of-sight (NLOS) mixed environments since the statistics information of NLOS biases is generally unknown. In this paper, we investigate the cooperative localization in LOS/NLOS mixed environments with spatial correlation. A maximum-likelihood estimator (MLE) based algorithm for joint agent localization and bias estimation is proposed without knowing statistics information of NLOS biases. The non-convex MLE is relaxed into a semidefinite programming and spatial correlation constraints are used to improve the localization accuracy. Furthermore, a bias-induced optimization is implemented to improve the localization performance by identifying LOS links. Finally, numerical results validate our theoretical analysis and the performance of the proposed algorithm.","PeriodicalId":426086,"journal":{"name":"2019 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2019.8756706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Network localization is challenging in line-of-sight (LOS)/non-line-of-sight (NLOS) mixed environments since the statistics information of NLOS biases is generally unknown. In this paper, we investigate the cooperative localization in LOS/NLOS mixed environments with spatial correlation. A maximum-likelihood estimator (MLE) based algorithm for joint agent localization and bias estimation is proposed without knowing statistics information of NLOS biases. The non-convex MLE is relaxed into a semidefinite programming and spatial correlation constraints are used to improve the localization accuracy. Furthermore, a bias-induced optimization is implemented to improve the localization performance by identifying LOS links. Finally, numerical results validate our theoretical analysis and the performance of the proposed algorithm.
合作定位中NLOS偏差相关的研究
在视距/非视距混合环境下,网络定位具有挑战性,因为视距偏差的统计信息通常是未知的。本文研究了具有空间相关性的LOS/NLOS混合环境下的协同定位。在不知道NLOS偏差统计信息的情况下,提出了一种基于极大似然估计的联合智能体定位和偏差估计算法。将非凸MLE松弛为半定规划,利用空间相关约束提高定位精度。此外,实现了偏差诱导优化,通过识别LOS链路来提高定位性能。最后,数值结果验证了理论分析和算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信