A Sample Efficiency Improved Method via Hierarchical Reinforcement Learning Networks

Qinghua Chen, Evan Dallas, Pourya Shahverdi, Jessica Korneder, O. Rawashdeh, W. Louie
{"title":"A Sample Efficiency Improved Method via Hierarchical Reinforcement Learning Networks","authors":"Qinghua Chen, Evan Dallas, Pourya Shahverdi, Jessica Korneder, O. Rawashdeh, W. Louie","doi":"10.1109/RO-MAN53752.2022.9900738","DOIUrl":null,"url":null,"abstract":"Learning from demonstration (LfD) approaches have garnered significant interest for teaching social robots a variety of tasks in healthcare, educational, and service domains after they have been deployed. These LfD approaches often require a significant number of demonstrations for a robot to learn a performant model from task demonstrations. However, requiring non-experts to provide numerous demonstrations for a social robot to learn a task is impractical in real-world applications. In this paper, we propose a method to improve the sample efficiency of existing learning from demonstration approaches via data augmentation, dynamic experience replay sizes, and hierarchical Deep Q-Networks (DQN). After validating our methods on two different datasets, results suggest that our proposed hierarchical DQN is effective for improving sample efficiency when learning tasks from demonstration. In the future, such a sample-efficient approach has the potential to improve our ability to apply LfD approaches for social robots to learn tasks in domains where demonstration data is limited, sparse, and imbalanced.","PeriodicalId":250997,"journal":{"name":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN53752.2022.9900738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Learning from demonstration (LfD) approaches have garnered significant interest for teaching social robots a variety of tasks in healthcare, educational, and service domains after they have been deployed. These LfD approaches often require a significant number of demonstrations for a robot to learn a performant model from task demonstrations. However, requiring non-experts to provide numerous demonstrations for a social robot to learn a task is impractical in real-world applications. In this paper, we propose a method to improve the sample efficiency of existing learning from demonstration approaches via data augmentation, dynamic experience replay sizes, and hierarchical Deep Q-Networks (DQN). After validating our methods on two different datasets, results suggest that our proposed hierarchical DQN is effective for improving sample efficiency when learning tasks from demonstration. In the future, such a sample-efficient approach has the potential to improve our ability to apply LfD approaches for social robots to learn tasks in domains where demonstration data is limited, sparse, and imbalanced.
基于层次强化学习网络的样本效率改进方法
从演示中学习(LfD)方法在社交机器人部署后,已经引起了人们对其在医疗保健、教育和服务领域教授各种任务的极大兴趣。这些LfD方法通常需要大量的演示,以便机器人从任务演示中学习性能模型。然而,在现实世界的应用中,要求非专家为社交机器人提供大量的演示来学习一项任务是不切实际的。在本文中,我们提出了一种通过数据增强、动态体验重播大小和分层深度q网络(DQN)来提高现有演示方法学习的样本效率的方法。在两个不同的数据集上验证了我们的方法后,结果表明我们提出的分层DQN在从演示中学习任务时有效地提高了样本效率。在未来,这种样本效率的方法有可能提高我们将LfD方法应用于社交机器人的能力,以在演示数据有限、稀疏和不平衡的领域中学习任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信