Feature Selection Based on Genetic Algorithm With Stochastic Disturbance Local Optimization

Lingyun Guo, Guohe Li, Ying Li, Zheng-Feng Li
{"title":"Feature Selection Based on Genetic Algorithm With Stochastic Disturbance Local Optimization","authors":"Lingyun Guo, Guohe Li, Ying Li, Zheng-Feng Li","doi":"10.1109/CCIS53392.2021.9754624","DOIUrl":null,"url":null,"abstract":"The paper proposes a feature selection method based on genetic algorithm with stochastic disturbance local optimization (GASD) for data dimension reduction problem. In this algorithm, a local search module is introduced into every search iteration under the global search framework of genetic algorithm. In the local search, a stochastic disturbance mechanism is utilized to update the current optimal feature subset. The optimal feature subset is obtained by using global search and optimized local search. Experimental results show that GASD can effectively delete redundant features, reduce data dimensions, and improve the generalization ability of classification model, especially in high-dimensional data.","PeriodicalId":191226,"journal":{"name":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS53392.2021.9754624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes a feature selection method based on genetic algorithm with stochastic disturbance local optimization (GASD) for data dimension reduction problem. In this algorithm, a local search module is introduced into every search iteration under the global search framework of genetic algorithm. In the local search, a stochastic disturbance mechanism is utilized to update the current optimal feature subset. The optimal feature subset is obtained by using global search and optimized local search. Experimental results show that GASD can effectively delete redundant features, reduce data dimensions, and improve the generalization ability of classification model, especially in high-dimensional data.
基于随机扰动局部优化遗传算法的特征选择
针对数据降维问题,提出了一种基于遗传算法的随机扰动局部优化特征选择方法。该算法在遗传算法的全局搜索框架下,在每次搜索迭代中引入一个局部搜索模块。在局部搜索中,利用随机扰动机制更新当前最优特征子集。通过全局搜索和优化的局部搜索得到最优特征子集。实验结果表明,GASD可以有效地删除冗余特征,降低数据维数,提高分类模型的泛化能力,特别是在高维数据中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信