A Proposed Robust Computational Network Modelling to Optimally Investigate Gene Data

D. M. Bhavana Gowda, M. Nachappa, A. Menon, K. Apoorva, Sanjeev Kumar Mandal
{"title":"A Proposed Robust Computational Network Modelling to Optimally Investigate Gene Data","authors":"D. M. Bhavana Gowda, M. Nachappa, A. Menon, K. Apoorva, Sanjeev Kumar Mandal","doi":"10.1109/GCAT52182.2021.9587627","DOIUrl":null,"url":null,"abstract":"Extracting informative contents of clinical importance from gene expression is challenging in bioinformatics. However, reviewing existing literature reviews found that almost all the frequently adopted techniques for analyzing gene expression data are associated with problems. Therefore, the proposed system offers a cost-effective framework that contributes to a simplified text mining approach with a novel design of gene-network analysis followed by optimization to incorporate novelty in this field.","PeriodicalId":436231,"journal":{"name":"2021 2nd Global Conference for Advancement in Technology (GCAT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd Global Conference for Advancement in Technology (GCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCAT52182.2021.9587627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extracting informative contents of clinical importance from gene expression is challenging in bioinformatics. However, reviewing existing literature reviews found that almost all the frequently adopted techniques for analyzing gene expression data are associated with problems. Therefore, the proposed system offers a cost-effective framework that contributes to a simplified text mining approach with a novel design of gene-network analysis followed by optimization to incorporate novelty in this field.
提出了一种鲁棒计算网络模型来优化研究基因数据
从基因表达中提取具有临床意义的信息内容是生物信息学的一个挑战。然而,回顾现有的文献综述发现,几乎所有常用的基因表达数据分析技术都存在问题。因此,所提出的系统提供了一个具有成本效益的框架,有助于简化文本挖掘方法,具有新颖的基因网络分析设计,然后进行优化,以纳入该领域的新颖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信